Search results

1 – 8 of 8
Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2022

Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…

Abstract

Purpose

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.

Design/methodology/approach

Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.

Findings

The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.

Originality/value

It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 January 2022

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The…

Abstract

Purpose

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS.

Design/methodology/approach

The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models.

Findings

The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results.

Practical implications

The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams.

Originality/value

The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 October 2022

Kesavan Manoharan, Pujitha Dissanayake, Chintha Pathirana, Dharsana Deegahawature and Renuka Silva

Sources highlight that lack of systematic labour training components results in low performance and productivity of labour, which leads the construction industry of many countries…

Abstract

Purpose

Sources highlight that lack of systematic labour training components results in low performance and productivity of labour, which leads the construction industry of many countries to face various challenges. This study aims to quantify the variations in the performance and productivity levels of labour in building construction projects through the applications of effective work-based training components.

Design/methodology/approach

A comprehensive literature review and a series of experts’ discussions with action-oriented communication approaches were conducted to develop a set of practices related to labour training, performance assessment and productivity measurements within a framework. The developed practices were applied to around 100 labourers working on nine building construction projects through a construction supervisory training programme.

Findings

The study presents the detailed patterns of the significant changes in labour performance and productivity levels. The majority of trained labourers have grown to perform the work process with some relevant theoretical and operational knowledge and skills. The overall results spotlight the significant behavioural changes that can be observed in workforce operations by improving labour performance, which resulted in implementing effective labour-rewarding practices within a framework.

Research limitations/implications

Although the study findings were limited to the Sri Lankan context, the proposed practices can be applied to the industry practices of the construction sector of other developing countries and the other developing industries in similar ways/scenarios.

Practical implications

The study outcomes contribute to uplifting the work qualities of labourers with life-long learning opportunities and unlocking the potential barriers for expanding the local labour supply while controlling the excessive inclination of the local firms towards foreign labour. This paper describes further implications and future scopes of the study elaborately.

Originality/value

The study provides generalised mechanisms and practices that transform the labour characteristics and add new attributes for strengthening the values of construction supervision practices to obtain well-improved work outputs. The study outcomes reinforce the chain relationships among the training elements, labour performance and productivity levels, leading to upgrading current planning and operational management practices, especially adding constructive mechanisms in resource levelling and productivity benchmarking practices.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 April 2024

Mahmoud Sabry Shided Keniwe, Ali Hassan Ali, Mostafa Ali Abdelaal, Ahmed Mohamed Yassin, Ahmed Farouk Kineber, Ibrahim Abdel-Rashid Nosier, Ola Diaa El Monayeri and Mohamed Ashraf Elsayad

This study focused on exploring the performance factors (PFs) that impact Infrastructure Sanitation Projects (ISSPs) in the construction sector. The aim was twofold: firstly, to…

Abstract

Purpose

This study focused on exploring the performance factors (PFs) that impact Infrastructure Sanitation Projects (ISSPs) in the construction sector. The aim was twofold: firstly, to identify these crucial PFs and secondly, to develop a robust performance model capable of effectively measuring and assessing the intricate interdependencies and correlations within ISSPs. By achieving these objectives, the study aimed to provide valuable insights into and tools for enhancing the efficiency and effectiveness of sanitation projects in the construction industry.

Design/methodology/approach

To achieve the study's aim, the methodology for identifying the PFs for ISSPs involved several steps: extensive literature review, interviews with Egyptian industry experts, a questionnaire survey targeting industry practitioners and an analysis using the Relative Importance Index (RII), Pareto principle and analytic network process (ANP). The RII ranked factor importance,  and Pareto identified the top 20% for ANP, which determined connections and interdependencies among these factors.

Findings

The literature review identified 36 PFs, and an additional 13 were uncovered during interviews. The highest-ranked PF is PF5, while PF19 is the lowest-ranked. Pareto principle selected 11 PFs, representing the top 20% of factors. The ANP model produced an application for measuring ISSP effectiveness, validated through two case studies. Application results were 92.25% and 91.48%, compared to actual results of 95.77% and 97.37%, indicating its effectiveness and accuracy, respectively.

Originality/value

This study addresses a significant knowledge gap by identifying the critical PFs that influence ISSPs within the construction industry. Subsequently, it constructs a novel performance model, resulting in the development of a practical computer application aimed at measuring and evaluating the performance of these projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 8 of 8