Search results

1 – 2 of 2
Article
Publication date: 14 July 2022

Pradyumna Kumar Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, Chandra Sekhar Reddy L. and S.V. Akilandeeswari

This paper aims to provide the security and privacy for Byzantine clients from different types of attacks.

Abstract

Purpose

This paper aims to provide the security and privacy for Byzantine clients from different types of attacks.

Design/methodology/approach

In this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing.

Findings

By using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped.

Originality/value

By using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 28 October 2022

Sheeba Juliet S., Vidhya M. and Govindarajan A.

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a…

Abstract

Purpose

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a horizontal rotating channel. The magnetic force is added to the governing equations. The effects of fluid flow parameters are observed under the applied magnetic force. In this system, the magnetic force is applied perpendicular to the plane of the fluid flow. In recent years, the magnetic field has renewed interest in aerospace technology. The physical and theoretical approach in the multidisciplinary field of magneto fluid dynamics (MFD) is applied in the field of aerospace vehicle design.

Design/methodology/approach

Authors use the perturbation method to solve and find the approximate solutions of differential equations. First, convert the partial differential equation to ordinary differential equation and calculate the approximate solutions in two cases. The first solution got by assuming heat generating in the fluid and the second one got when heat absorbing. After applying the external magnetic force, the effects of various fluid parameters velocity, temperature, skin friction coefficient and Nusselt number are found and discussed using tables and graphs.

Findings

It is found that the velocity of the fluid has decreased tendency when the rotation of the fluid and magnetic force on the fluid increases. The temperature of the fluid, Prandtl value and Eckert number increased when the heat source generated heat. When heat absorbs the heat, sink parameter increases and the temperature of the fluid decreases. Also, while heat absorbs, the temperature increases when the Prandtl value and Eckert number increase.

Originality/value

The skin friction coefficient on the surface increases, when the rotation parameter and the magnetic force parameter of the fluid increase. In the case of heat generating, the Nusselt number increased, while the Eckert number and Prandtl numbers increased. Also, the Nusselt number has larger values when the heat source parameter has near the constant temperature, and it has smaller values when the temperature varies. In the case of heat-absorbing, the Nusselt number decreased when the Eckert and Prandtl numbers increased. Also, the Nusselt number varies up and down while the heat absorbing parameter increases.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Content type

Earlycite article (2)
1 – 2 of 2