Search results

1 – 3 of 3
Article
Publication date: 6 August 2018

Somia Bechar and Djamal Zerrouki

Wells’ cementing is an important and costly step in the engineering sector for oil and gas well. The purpose of this study was to investigate the use of Algerian natural pozzolan…

Abstract

Purpose

Wells’ cementing is an important and costly step in the engineering sector for oil and gas well. The purpose of this study was to investigate the use of Algerian natural pozzolan (NP) in order to evaluate the influence of partial substitution of class G cement on slurry properties.

Design/methodology/approach

NP was characterized by X-ray fluorescence (XRF), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and Fourier-transform infra-red spectrometry (FTIR). Their pozzolanic activity was evaluated by measuring the electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The replacement ration cement/NP was 10, 20 and 30 per cent, and the rheological behaviour, compressive strength properties at different ages, elastic properties, X-ray diffraction analysis, rapid chloride penetration, porosity and permeability of all slurries were investigated and compared with a standard sample.

Findings

The obtained results indicated that the replacement with 20 per cent by weight of cement at 21 and 28 days had a higher compressive strength (+30.62 per cent) and lower chloride penetration.

Originality/value

The results show the potential of the use of locally available NP in well cementing.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 March 2020

Yacine Abadou, Abderrahmane Ghrieb, Rosa Bustamante and Hayette Faid

The purpose of this study is to fit an appropriate mathematical model to express response variables as functions of the proportions of the mixture components. One purpose of…

Abstract

Purpose

The purpose of this study is to fit an appropriate mathematical model to express response variables as functions of the proportions of the mixture components. One purpose of statistical modeling in a mixture experiment is to model the blending surface such that predictions of the response for any mixture component, singly or in combination, can be made empirically. Testing of the model adequacy will also be an important part of the statistical procedure.

Design/methodology/approach

A series of mortar using air lime, marble and ceramic sanitary waste aggregates were prepared for statistically designed combinations. The combinations were designed based on the mixture-design concept of design of experiments; this mortar is often used as a filler material in restoration projects. The aim of this work is to find an optimal composition of a paste for the manufacture of air lime mortar with ceramic and marble waste. This investigation aims to recommend mix design for air lime-based mortar, by optimizing the input combination for different properties, and to predict properties such as mechanical strength, thermogravimetric and x-ray diffraction analysis with a high degree of accuracy, based on a statistical analysis of experimental data.

Findings

This paper discusses those mortar properties that architects, contractors and owners consider important. For each of these properties, the influence of ceramic and marble waste in the air lime mortar is explored. The flexibility of lime-based mortars with waste materials to meet a wide range of needs in both new construction and restoration of masonry projects is demonstrated.

Originality/value

The objective of the present investigation is to recommend mixture design for air lime mortar with waste, by optimizing the input combination for different properties, and to predict properties such as compressive strength, flexural strength with a high degree of accuracy, based on the statistical analysis of experimental data. The authors conducted a mixture design study that takes into account dependent parameters such as the constituents of our air lime-based mortar where we have determined an experiment matrix to which we have connected the two responses, namely, compressive and flexural strength. By introducing the desirability criteria of these two responses, using JMP software, we were able to obtain a mixture optimal for air lime mortar with ceramic and marble waste.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 October 2021

Mohammed Seghir Ammari, Mohammed Bachir Tobchi, Yahia Amrani, Anouer Mim, Madani Bederina and Ahmida Ferhat

This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand…

Abstract

Purpose

This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand concrete. This work is a continuation of previous studies conducted on sand concrete, the purpose of which is to introduce industrial waste into this material. For this purpose, a glass waste in powder form is added.

Design/methodology/approach

This study is focused on the effect of adding glass powder (GP) whose mass percentage varies from 0 to 40% with an interval of 10% to target the right composition that ensures the best compromise between the characteristics studied.

Findings

The results found show that the workability and density of the studied concretes decreased with increasing GP dosage. Indeed, the optimal addition which constitutes the best compromise between the studied properties is 10% of GP. Improvements of up to about 9% in the case of flexural strength and about 18% in the case of compressive strength. The thermal conductivity has been reduced by 12.74%, the thermal diffusivity which characterizes the notion of thermal inertia has been reduced by about 4% and the specific heat mass has been reduced by 7.80%. Also, the shrinkage has been reduced by about 20%. The microstructure of the studied composite shows a good homogeneity between the aggregates. Finally, the addition of GP to sand concrete gives very encouraging results.

Originality/value

The interest of this study is in two parts. The first one is the exploitation of local materials: dune sand, river sand and limestone filler to meet the growing demand for construction materials. And the second one is the reuse of glass waste, in the form of powder (GP), to solve the environmental problem. All this participates in the improvement of the physical-mechanical properties of sand concrete and the extent of its response to the development of an economical structural concrete.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3