Search results

1 – 10 of over 2000
Article
Publication date: 19 May 2022

Laxmi Gupta and Ravi Shankar

Battery integration with renewable energy and conventional power grid is common practice in smart grid systems and provides higher operational flexibility. Abundant issues and…

Abstract

Purpose

Battery integration with renewable energy and conventional power grid is common practice in smart grid systems and provides higher operational flexibility. Abundant issues and challenges to the Indian smart grid while integrating renewable energy and storage technology will give timely emphasis to grasp uninterrupted power supply in forthcoming trend. Hence, this paper aims to acknowledge different barriers of battery integration and evaluate them to develop approaches for restricting their influence.

Design/methodology/approach

A multi-model approach is used to illustrate how these challenges are interrelated by systematically handling expert views and helps to chronologically assemble various issues from the greatest severe to the slightest severe ones. Further, these barriers are grouped using the cross-impact matrix multiplication applied to the classification analysis (MICMAC) study grounded on their driving and dependence power. Also, hypothesis testing was done to validate the obtained model.

Findings

It provides a complete thoughtful on directional interrelationships between the barriers and delivers the best possible solution for the active operation of the smart grid and its performance.

Research limitations/implications

There is a significant requirement for high-tech inventions outside the transmission grid to function for the integration of renewables and storage systems.

Practical implications

The model will support policymakers in building knowledgeable decisions while chronologically rejecting the challenges of battery integration in smart grid systems to improve power grid performance.

Originality/value

Based on author’s best knowledge, there is hardly any research that explicitly explains the framework for the barriers of battery integration in grid for developing countries like India. It is one of the first attempts to understand the fundamental barriers for battery integration. This study adds significantly to the literature on the energy sector by capturing the perspective of various stakeholders.

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 September 2023

Dangshu Wang, Xuan Deng, Zhimin Guan, Shulin Liu, Yaqiang Yang and Xinxia Wang

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant…

45

Abstract

Purpose

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant voltage charging is realized.

Design/methodology/approach

The purpose of this study is to simplify the circuit design and control complexity of the magnetic coupling resonance wireless charging system, in order to achieve constant current and constant voltage charging for wireless energy transmission. First, the principle of LCC/S-S compensation structure is analyzed, and the equivalent mathematical model is established; then, the system characteristics under constant current and constant voltage mode are analyzed, and the design method of system parameters is given; finally, a simulation and experimental system is built to verify the correctness and feasibility of the theoretical analysis.

Findings

The results show that the proposed hybrid topology can achieve a constant current output of 2 A and a constant voltage output of 30 V under variable load conditions, and effectively suppress the current distortion problem under light load conditions. The waveform distortion rate of the inverter current is reduced from 33.97% to 10.45%.

Originality/value

By changing the high-order impedance characteristics of the compensation structure, the distortion of the current waveform under light load is suppressed, and the overall stability and efficiency of the system are improved.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 April 2022

Rajesh Babu Damala, Ashish Ranjan Dash and Rajesh Kumar Patnaik

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power…

Abstract

Purpose

This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power system disturbances on the high-voltage DC (HVDC) transmission link.

Design/methodology/approach

A change detection filter is used to the average and differential current components, which detects the point of fault initiation and records a change detection point (CDP). The half-cycle differential and average currents on both sides of the CDP are sent through the signal processing unit, which produces the respective target. The extracted target indices are sent through a decision tree-based fault classifier mechanism for fault classification.

Findings

In comparison with conventional differential current protection systems, the developed framework is faster in fault detection and classification and provides great accuracy. The new technology allows for prompt identification of the fault category, allowing electrical grids to be restored as quickly as possible to minimize economic losses. This novel technology enhances efficiency in terms of reducing computing complexity.

Research limitations/implications

Setting a threshold value for identification is one of the limitations. To bring the designed system into stability condition before creating faults on it is another limitation. Reducing the computational burden is one of the limitations.

Practical implications

Creating a practical system in laboratory is difficult as it is a HVDC transmission line. Apart from that, installing rectifier and converter section for HVDC transmission line is difficult in a laboratory setting.

Originality/value

The suggested scheme’s importance and accuracy have been rigorously validated for the standard HVDC transmission system, subjected to various types of DC fault, and the results show the proposed algorithm would be a feasible alternative to real-time applications.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2023

Khaoula Assadi, Jihane Ben Slimane, Hanene Chalandi and Salah Salhi

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural…

Abstract

Purpose

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural networks (ANNs). The proposed scheme can detect and classify several types of faults, including line-to-ground, line-to-line, double-line-to-ground, triple-line and triple-line-to-ground faults.

Design/methodology/approach

The fundamental components of three-phase current and voltage were used as inputs in the ANNs. An analysis of the impact of variations in the fault resistance, fault type and fault inception time was conducted to evaluate the ANNs performance. The survey compares the performance of the multi-layer perceptron neural network (MLPNN) and Elman recurrent neural network trained with the backpropagation learning technique to improve each of the three phases of the fault detection and classification process. A detailed analysis validates the choice of the ANNs architecture based on the variation in the number of hidden neurons in each step.

Findings

The mean square error, root mean square error, mean absolute error and linear regression are measured to improve the efficiency of the ANN models for both fault detection and classification. The results indicate that the MLPNN can detect and classify faults with a satisfactory performance.

Originality/value

The smart adaptive scheme is fast and accurate for fault detection and classification in a single circuit transmission line when faced with different conditions and can be useful for transmission line protection schemes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 June 2022

Han Liu, Guojin Yang and Rong Wang

The wireless power transmission (WPT) system with an embedded coil will achieve a more flexible charging operation and higher system efficiency. However, the comprehensive…

Abstract

Purpose

The wireless power transmission (WPT) system with an embedded coil will achieve a more flexible charging operation and higher system efficiency. However, the comprehensive analysis considering cross-coupling for WPT with embedded coil is rarely investigated. This study aims to improve the system efficiency of WPT with the embedded coil based on circuit analysis and optimization of embedded coil loops.

Design/methodology/approach

The circuit model of WPT system with the non-resonant compensated embedded coil is developed by taking the cross-coupling of all coils and the circuit compensation degree of the embedded coil into consideration. On the basis of system characteristics analysis, optimization of embedded coil position and non-resonant compensation are proposed to improve the efficiency of WPT system with embedded coil. Experimental studies demonstrate the correctness of theoretical research.

Findings

The WPT system with embedded coil designed by optimizing the position and non-resonant compensation achieves higher efficiency than those of the system with two-coil mode and the three-coil system with a resonant compensated embedded coil.

Practical implications

A WPT system with embedded coil could be more efficient by using a non-resonant compensated coil embedded into the buffer material of the storage box for sophisticated electrical equipment.

Originality/value

The cross-coupling between all coils is considered in circuit analysis for WPT system with embedded coil. Optimization of the position and non-resonant compensation of embedded coil achieves higher efficiency.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 31 July 2023

Chong Xu, Pengbo Wang, Fan Yang, Shaohua Wang, Junping Cao and Xin Wang

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Abstract

Purpose

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Design/methodology/approach

Aiming at the multiphysical mechanism of the discharge ablation process, a multiphysical field model based on plasma energy deposition is established to analyze the discharge characteristics of the power cable bellows. The electrostatic field, plasma characteristics, energy deposition and temperature field are analyzed. The discharge experiment is also carried out for result validation.

Findings

The physical mechanism of the bellows ablative effect caused by partial discharge is studied. The results show that the electric field intensity between the aluminum sheath and the buffer layer easily exceeds the pressure resistance value of air breakdown. On the plasma surface of the buffer layer, the electron density is about 4 × 1,019/m3, and the average temperature of electrons is about 3.5 eV. The energy deposition analysis using the Monte Carlo method shows that the electron range in the plasma is very short. The release will complete within 10 nm, and it only takes 0.1 s to increase the maximum temperature of the buffer layer to more than 1,000 K, thus causing various thermal effects.

Originality/value

Its physical process involves the distortion of electric field, formation of plasma, energy deposition of electrons, and abrupt change of temperature field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 2000