Search results

1 – 10 of 560
Open Access
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of…

1917

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1934

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 2 August 2023

Armaghan Chizaryfard, Yulia Lapko and Paolo Trucco

This study advocates the importance of taking an evolutionary perspective in the strategic configuration of closed-loop supply chains (CLSC) in the transition to a circular…

1297

Abstract

Purpose

This study advocates the importance of taking an evolutionary perspective in the strategic configuration of closed-loop supply chains (CLSC) in the transition to a circular economy. Building on the supply chain management and industrial dynamics research domains, an evolutionary analytical framework was developed and applied in the empirical context of the ongoing industrial transition to e-mobility.

Design/methodology/approach

This study is designed as an in-depth exploratory case study to capture the multi-layer dynamic complexities and their interplay in CSLC development. The empirical investigation was based on two-year interactions between the authors and various departments in a leading European heavy vehicle manufacturer. The proposed evolutionary analytical framework was used for investigating the dynamics of four CLSC configurations through ten possible trajectories.

Findings

The findings demonstrate that the evolution of each CLSC configuration comes with multiple challenges and requirements and point out the necessity for the co-development of technologies, product design and production, and infrastructure through long-term relationships among key supply chain actors. However, this evolutionary journey is associated with multiple dilemmas caused by uncertainties in the market and technology developments. All these factors were properly captured and critically analyzed, along with their interactions, thanks to the constructs included in the proposed evolutionary analytical framework.

Research limitations/implications

The proposed evolutionary framework is applicable for examination of SC transformation in the context of market and technology development, and is particularly relevant for transitioning from linear SC to CLSC. The framework offers a single actor perspective, as it does not directly tackle dynamics and effects of actions taken by SC actors.

Practical implications

The developed framework can support SC managers in identifying, framing, and comparing alternative strategies for CLSC configuration in the transition process.

Originality/value

This study proposes the framework for understanding and guiding the evolutionary process of CLSC development. Its uniqueness lies in the integration of concepts from innovation and evolutionary theories coming from industrial dynamics and SCM literature streams.

Details

The International Journal of Logistics Management, vol. 34 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 3 August 2023

Claudia Presti, Federica De Santis and Francesca Bernini

This paper aims to propose an interpretive framework to understand how machine learning (ML) affects the way companies interact with their ecosystem and how the introduction of…

Abstract

Purpose

This paper aims to propose an interpretive framework to understand how machine learning (ML) affects the way companies interact with their ecosystem and how the introduction of digital technologies affects the value co-creation (VCC) process.

Design/methodology/approach

This study bases on configuration theory, which entails two main methodological phases. In the first phase the authors define the theoretically-derived interpretive framework through a literature review. In the second phase the authors adopt a case study methodology to inductively analyze the theoretically-derived domains and their relationships within a configuration.

Findings

ML enables multi-directional knowledge flows among value co-creators and expands the scope of VCC beyond the boundaries of the firm-client relationship. However, it determines a substantive imbalance in knowledge management power among the actors involved in VCC. ML positively impacts value co-creators’ performance but also requires significant organizational changes. To benefit from VCC via ML, value co-creators must be aligned in terms of digital maturity.

Originality/value

The paper answers the call for more theoretical and empirical research on the impact of the introduction of Industry 4.0 technology in companies and their ecosystem. It intends to improve the understanding of how ML technology affects the determinants and the process of VCC by providing both a static and dynamic analysis of the topic.

Details

European Journal of Innovation Management, vol. 26 no. 7
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Book part
Publication date: 18 July 2022

Devrim Murat Yazan, Guido van Capelleveen and Luca Fraccascia

The sustainable transition towards the circular economy requires the effective use of artificial intelligence (AI) and information technology (IT) techniques. As the…

Abstract

The sustainable transition towards the circular economy requires the effective use of artificial intelligence (AI) and information technology (IT) techniques. As the sustainability targets for 2030–2050 increasingly become a tougher challenge, society, company managers and policymakers require more support from AI and IT in general. How can the AI-based and IT-based smart decision-support tools help implementation of circular economy principles from micro to macro scales?

This chapter provides a conceptual framework about the current status and future development of smart decision-support tools for facilitating the circular transition of smart industry, focussing on the implementation of the industrial symbiosis (IS) practice. IS, which is aimed at replacing production inputs of one company with wastes generated by a different company, is considered as a promising strategy towards closing the material, energy and waste loops. Based on the principles of a circular economy, the utility of such practices to close resource loops is analyzed from a functional and operational perspective. For each life cycle phase of IS businesses – e.g., opportunity identification for symbiotic business, assessment of the symbiotic business and sustainable operations of the business – the role played by decision-support tools is described and embedding smartness in these tools is discussed.

Based on the review of available tools and theoretical contributions in the field of IS, the characteristics, functionalities and utilities of smart decision-support tools are discussed within a circular economy transition framework. Tools based on recommender algorithms, machine learning techniques, multi-agent systems and life cycle analysis are critically assessed. Potential improvements are suggested for the resilience and sustainability of a smart circular transition.

Details

Smart Industry – Better Management
Type: Book
ISBN: 978-1-80117-715-3

Keywords

Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft…

3743

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 8 August 2022

Tim Gruchmann

While the literature on multitier supply chain management traditionally assumes that first-tier suppliers belong to the visible proportion of the supply base, intermediaries might…

1889

Abstract

Purpose

While the literature on multitier supply chain management traditionally assumes that first-tier suppliers belong to the visible proportion of the supply base, intermediaries might limit focal firms' visible horizon already at this stage. High power asymmetries promoting centrality and complexity in the supply network are seen as a particular root cause that limits the impact of governance mechanisms for sustainability. To map the space for governance mechanisms in a network-sensitive context more comprehensively, the study analyzes supply network characteristics from a power perspective.

Design/methodology/approach

This research is conceptual. To better understand power imbalances and mutual dependencies from network centrality and complexity, network configurations were constructed drawing on resource dependence theory. These configurations allow deducing the impact of (non-)mediated governance mechanisms for a sustainable development in the supply network. An agenda to stimulate future empirical and model-based research is accordingly presented.

Findings

The research shows that those networks with densely interconnected first-tier suppliers promote network centrality and complexity, leading to an inverted U-shape relationship between the focal firm's exertion of coercive power and the sustainability performance in the supply network. The findings allow a more comprehensive theoretical grounding for mapping governance approaches in a network-sensitive context and provide insights on how to avoid negative effects from power asymmetries.

Practical implications

The findings suggest the need for accompanying, indirect governance mechanisms already at the stage of first-tier suppliers based on non-mediated forms of power, such as referent power, also promoting disintermediation. Purchasing companies may also consider using digital platform technologies that foster disintermediation, such as blockchain technology.

Originality/value

By studying intermediaries from a power and network perspective, the conceptualization adds to the discussion on governance in multitier sustainable supply chain networks in various industries. Furthermore, it contributes to the increasing efforts of middle-range theorizing in logistics and supply chain management. The results partially challenge previous assumptions on the moderating role of specific network characteristics.

Details

The International Journal of Logistics Management, vol. 33 no. 5
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 18 May 2020

Md Nahin Hossain, Md. Shamim Talukder, Abul Khayer and Yukun Bao

In the era of m-learning environments, multiple factors have been considered to explain adult learners' continuance usage intention, but largely without considering the role of…

3870

Abstract

Purpose

In the era of m-learning environments, multiple factors have been considered to explain adult learners' continuance usage intention, but largely without considering the role of specific configurations of variables and how they may affect learners' intention. The purpose of this study is to show how cognitive need, subjective norms, perceived usefulness, satisfaction, confirmation, attitude and perceived ease of use combine to predict learners' frequent use intentions.

Design/methodology/approach

It is empirically validated through configurational analysis, using fuzzy-set qualitative comparative analysis (fsQCA) on 211 adult learners with experience in using Mobile learning applications (MLA).

Findings

The findings show learners' satisfaction of MLA usage combined with the cognitive need and attitude were found to be core conditions reinforcing learners' continuance intention.

Research limitations/implications

This study was conducted in the context of adult learners MLA whereby the motivations for continued usage and the nature of technological innovation could differ. In this regard, findings from this study may not be generalizable to other technological contexts.

Practical implications

In the planning and development of learning apps, software developers should pay attention to practical functions and extend key features that are frequently required for solving a problem using the new skill. On the marketing side, MLA companies should emphasize the full functionality of their apps to cater efficiently to the different needs and expectations of the learners.

Originality/value

This study contributes by extending existing knowledge on how cognitive need, satisfaction and attitude combine to increase or mitigate continuance intention to use toward the development of new configurational theories. This study fills the gap in the literature by introducing adult learners' continuance intention to use MLA and introducing through a methodological approach of fsQCA in adult learners' context.

Details

Journal of Research in Innovative Teaching & Learning, vol. 14 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 10 May 2022

Sara Harper and Rudrajeet Pal

Technology and market pressures are encouraging localized and small-series production in customer-driven industries. The purpose of this paper is to explore and understand the…

1204

Abstract

Purpose

Technology and market pressures are encouraging localized and small-series production in customer-driven industries. The purpose of this paper is to explore and understand the supply chain-, product- and process-design factors for small-series production in EU’s textile and apparel industry, to understand configuration decisions, priorities and challenges.

Design/methodology/approach

An interview study was undertaken with ten companies that represent diverse small-series production models and value chain roles. Interview data was analysed to identify supply network configuration characteristics, decision priorities and challenges.

Findings

Three small-series production models emerged from the analysis, differing with respect to adoption of process postponement and customization. The findings confirm and extend past research regarding diverse decision priorities and product, process, supply chain structure/relationship configurations. Challenges identified relate to planning (priorities) and implementation (configuration). Whereas competence availability and digital technology challenges are common, several difficulties are linked to production model like tensions related to priorities and small volumes, which are not found with customization.

Research limitations/implications

Future research can make comparisons with other industry and location contexts; adopt dynamic approaches to distinguish between design and reconfiguration processes; and address indicated paradoxical-tensions.

Practical implications

The study findings can provide guidance for companies regarding identification of priorities and management of (planning/implementation) challenges impacting small-series production in T&A.

Originality/value

The paper brings a configuration perspective at the supply chain level to the problem of small-series production implementation, which demands holistic and context-specific understanding.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

1 – 10 of 560