Search results

1 – 10 of over 25000
Article
Publication date: 11 October 2011

V.P. Vallala, J.N. Reddy and K.S. Surana

Most studies of powerlaw fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of…

Abstract

Purpose

Most studies of powerlaw fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of powerlaw fluids have not been explored yet. Also, there has been no study of the weak‐form Galerkin formulation using the reduced integration penalty method (RIP) for powerlaw fluids. Based on these observations, the purpose of this paper is to fulfill the two‐fold objective of formulating the least‐squares finite element model for powerlaw fluids, and the weak‐form RIP Galerkin model of powerlaw fluids, and compare it with the least‐squares finite element model.

Design/methodology/approach

For least‐squares finite element model, the original governing partial differential equations are transformed into an equivalent first‐order system by introducing additional independent variables, and then formulating the least‐squares model based on the lower‐order system. For RIP Galerkin model, the penalty function method is used to reformulate the original problem as a variational problem subjected to a constraint that is satisfied in a least‐squares (i.e. approximate) sense. The advantage of the constrained problem is that the pressure variable does not appear in the formulation.

Findings

The non‐Newtonian fluids require higher‐order polynomial approximation functions and higher‐order Gaussian quadrature compared to Newtonian fluids. There is some tangible effect of linearization before and after minimization on the accuracy of the solution, which is more pronounced for lower powerlaw indices compared to higher powerlaw indices. The case of linearization before minimization converges at a faster rate compared to the case of linearization after minimization. There is slight locking that causes the matrices to be ill‐conditioned especially for lower values of powerlaw indices. Also, the results obtained with RIP penalty model are equally good at higher values of penalty parameters.

Originality/value

Vorticity‐based least‐squares finite element models are developed for powerlaw fluids and effects of linearizations are explored. Also, the weak‐form RIP Galerkin model is developed.

Article
Publication date: 12 April 2013

A. Postelnicu and I. Pop

The purpose of this paper is to investigate the steady flow of a non‐Newtonian powerlaw type fluid over a permeable stretching surface. The surface is stretched with a prescribed…

Abstract

Purpose

The purpose of this paper is to investigate the steady flow of a non‐Newtonian powerlaw type fluid over a permeable stretching surface. The surface is stretched with a prescribed skin velocity following a powerlaw variation along its length.

Design/methodology/approach

Using appropriate similarity variables and boundary layer approximations, the continuity and momentum equations are reduced to an ordinary differential equation subject to appropriate transformed boundary conditions, with three dimensionless parameters: the powerlaw index of the non‐Newtonian fluid, suction/injection parameter and the power law index of the skin velocity. These equations are solved numerically by using the fourth‐order Runge‐Kutta integration algorithm coupled with a conventional shooting procedure. Comparisons with closed form analytical solutions obtained for the case of Newtonian fluid by previous authors are also performed.

Findings

It was found that the dimensionless entrainment velocity decreases with the power exponent m, of the prescribed skin velocity, irrespective of the non‐Newtonian fluid nature, for both impermeable and permeable surfaces. Large rates of injection lead to very large values of the skin friction, the effect being more intense for small values of the dimensionless flow index n. At the same rate of the injection/suction, the skin friction S is increased when the surface is stretched linearly than uniformly.

Practical implications

This type of problem has potential to serve as a prototype for many manufacturing processes such as rolling sheet drawn from a die, cooling and/or drying of paper and textile, manufacturing of polymeric sheets, sheet glass and crystalline materials, etc.

Originality/value

A thorough analysis of the hydrodynamics of a stretching surface is performed in the present paper, by combining analytical and numerical means. The topics covered here (Ostwald‐de Waele powerlaw fluid + prescribed skin velocity + permeability of the stretching surface) seem to be not reported till now in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1971

S. NARANAN

Several power law relations are found to occur in bibliographic studies of scientific journals, articles, and citations. These can be interpreted in a self‐consistent manner in…

Abstract

Several power law relations are found to occur in bibliographic studies of scientific journals, articles, and citations. These can be interpreted in a self‐consistent manner in terms of growth parameters of articles, journals, and citations. Similar models have been proposed earlier in physical, biological, and behavioural sciences.

Details

Journal of Documentation, vol. 27 no. 2
Type: Research Article
ISSN: 0022-0418

Article
Publication date: 4 July 2016

Madhu Macha, Kishan Naikoti and Ali J Chamkha

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power

Abstract

Purpose

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink.

Design/methodology/approach

The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method.

Findings

The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented.

Originality/value

To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2016

Sahin Yigit, Timothy Graham, Robert J Poole and Nilanjan Chakraborty

Numerical simulations have been used to analyse steady-state natural convection of non-Newtonian power-law fluids in a square cross-sectioned cylindrical annular cavity for…

Abstract

Purpose

Numerical simulations have been used to analyse steady-state natural convection of non-Newtonian power-law fluids in a square cross-sectioned cylindrical annular cavity for differentially heated vertical walls for a range of different values of nominal Rayleigh number, nominal Prandtl number and power-law exponent (i.e. 103 < Ra < 106, 102 < Pr < 104 and 0.6 < n < 1.8). The paper aims to discuss these issues.

Design/methodology/approach

Analysis is carried out using finite-volume based numerical simulations.

Findings

Under the assumption of axisymmetry, it has been shown that the mean Nusselt number on the inner periphery Nu i increases with decreasing (increasing) power-law exponent (nominal Rayleigh number) due to strengthening of thermal advection. However, Nu i is observed to be essentially independent of nominal Prandtl number. It has been demonstrated that Nu i decreases with increasing internal cylinder radius normalised by its height r i /L before asymptotically approaching the mean Nusselt number for a two-dimensional square enclosure in the limit r i /L→infinity. By contrast, the mean Nusselt number normalised by the corresponding Nusselt number for pure conductive transport (i.e. Nu i /Nu cond ) increases with increasing r i /L.

Originality/value

A correlation for Nu i has been proposed based on scaling arguments, which satisfactorily captures the mean Nusselt number obtained from the steady-state axisymmetric simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Gulraiz Ahmed, Mathieu Sellier, Yeaw Chu Lee, Mark Jermy and Michael Taylor

– The purpose of this paper is to investigate numerically the effect of rheology on the leveling of thin fluid films on horizontal solid substrates.

Abstract

Purpose

The purpose of this paper is to investigate numerically the effect of rheology on the leveling of thin fluid films on horizontal solid substrates.

Design/methodology/approach

A mathematical model based on the lubrication approximation which defines non-Newtonian rheology using a Power-law model is presented. The rheology is described by two parameters: the consistency factor and the flow behavior index. The resulting highly non-linear coupled set of equations is discretized using Finite-Difference and the resulting algebraic system is solved via an efficient Multigrid algorithm.

Findings

Importantly, the non-dimensionalization process leads to a pair of Partial Differential Equations which depends on one parameter only, the flow behavior index. The authors show that the consistency factor only affects the time scale of the leveling process, hence stretching or contracting the time line. Results for the leveling of sinusoidal perturbations of the fluid film highlights important differences between the leveling of shear-thinning and shear-thickening fluids. In a normalized time frame, the onset of leveling occurs earlier for the shear-thinning fluid than for the shear-thickening one. However, the dimensionless leveling rate is higher for the shear-thickening fluid than the shear-thinning one. This results in a “threshold thickness” which delimits two regimes: the shear-thinning fluid levels to a thickness above this threshold faster than the shear-thickening fluid but the opposite is true for a film thickness below this threshold. An important aspect of this study is the verification of the numerical implementation using the Method of Manufactured Solutions (MMS), a first in the context of thin film studies. The paper also highlights differences between the leveling of two-dimensional and three-dimensional thickness perturbations.

Originality/value

The study of the leveling of disturbances at the free surface of a liquid film using a Power-law rheological model does not appear to have been covered in the literature. Also, the paper uses the MMS to test the validity of the implementation. This appears to be the first time it has been used in the context of the lubrication approximation. Finally, unlike most prior studies, the work does away with the planar assumption.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2006

M. Lamsaadi, M. Naïmi and M. Hasnaoui

The aim of this work is to study numerically and analytically flow and heat transfer characteristics and multiplicity of steady states for natural convection in a horizontal…

Abstract

Purpose

The aim of this work is to study numerically and analytically flow and heat transfer characteristics and multiplicity of steady states for natural convection in a horizontal rectangular cavity, filled with non‐Newtonian powerlaw fluids and heated from all sides.

Design/methodology/approach

The governing equations are discretised by using the well known second‐order central finite difference method and integrated by combining the ADI and PSOR techniques. The analytical approach is based on the parallel flow assumption.

Findings

Natural and anti‐natural flows existence is proved when the Rayleigh number exceeds a critical value and the side lateral heating intensity values is chosen inside a specific range. The analytical results are found to agree well with those obtained numerically. The fluid flow and the heat transfer are found to be rather sensitive to the non‐Newtonian powerlaw behaviour.

Research limitations/implications

The obtained results are limited to non‐Newtonian powerlaw fluids and cannot be extended to fluids having other behaviours.

Practical implications

The problem is implied in some industrial thermal processes.

Originality/value

Existence of multiple steady state‐solutions in the range of the side lateral heating intensity values ensuring, that is reduced by the shear‐thickening behaviour and extended by the shear‐thinning one for a given value of Rayleigh number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2009

Daphne R. Raban and Eyal Rabin

The purpose of this paper is to propose a method for statistical inference on data from power law distributions in order to explain behavior and social phenomena associated with…

Abstract

Purpose

The purpose of this paper is to propose a method for statistical inference on data from power law distributions in order to explain behavior and social phenomena associated with web‐based social spaces such as discussion forums, question‐and‐answer sites, web 2.0 applications and the like.

Design/methodology/approach

The paper starts by highlighting the importance of explaining behavior in social networks. Next, the power law nature of social interactions is described and a hypothetical example is used to explain why analyzing sub‐sets of data might misrepresent the relationship between variables having power law distributions. Analysis requires the use of the complete distribution. The paper proposes logarithmic transformation prior to correlation and regression analysis and shows why it works using the hypothetical example and field data retrieved from Microsoft's Netscan project.

Findings

The hypothetical example emphasizes the importance of analyzing complete datasets harvested from social spaces. The Netscan example shows the importance of the logarithmic transformation for enabling the development of a predictive regression model based on the power law distributed data. Specifically, it shows that the number of new and returning participants are the main predictors of discussion forum activity.

Originality/value

This paper offers a useful analysis tool for anyone interested in social aspects of the Internet as well as corporate intra‐net systems, knowledge management systems or other systems that support social interaction such as cellular phones and mobile devices. It also explains how to avoid errors by paying attention to assumptions and range restriction issues.

Details

Internet Research, vol. 19 no. 3
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 3 June 2014

Minakshi Poonia and R. Bhargava

The purpose of this paper is to deal with the study of free convection magnetohydrodynamic (MHD) boundary layer flow of an incompressible viscoelastic fluid along an inclined…

Abstract

Purpose

The purpose of this paper is to deal with the study of free convection magnetohydrodynamic (MHD) boundary layer flow of an incompressible viscoelastic fluid along an inclined moving plate and heat transfer characteristics with prescribed quadratic power-law surface temperature.

Design/methodology/approach

The governing partial differential equations are transformed into non-dimensional, non-linear coupled ordinary differential equations which are solved numerically by robust Galerkin finite element method.

Findings

Numerical results for the dimensionless velocity and temperature profiles are displayed graphically for various physical parameters such as viscoelasticity, Prandtl number, angle of inclination parameter, magnetic and buoyancy parameter. The local Nusselt number is found to be the decreasing function of magnetic field parameter whereas it increases with increasing values of Prandtl number, viscoelastic parameter and buoyancy parameter.

Practical implications

The present problem finds significant applications in MHD power generators, cooling of nuclear reactors, thin film solar energy collector devices.

Originality/value

The objective of this work is to analyze the heat transfer of convective MHD viscoelastic fluid along a moving inclined plate with quadratic power law surface temperature. An extensively validated, highly efficient, variation finite element code is used to study this problem. The results are validated and demonstrated graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 January 2015

Zhu Fanglong, Feng Qianqian, Liu Rangtong, Li Kejing and Zhou Yu

– The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.

Abstract

Purpose

The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.

Design/methodology/approach

The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability.

Findings

The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid.

Originality/value

The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 25000