Search results

1 – 10 of over 69000
Open Access
Article
Publication date: 11 August 2022

Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…

Abstract

Purpose

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.

Design/methodology/approach

To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.

Findings

The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.

Originality/value

This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades…

8468

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2023

Pouya Bolourchi and Mohammadreza Gholami

The purpose of this paper is to achieve high accuracy in forecasting generation reliability by accurately evaluating the reliability of power systems. This study uses the RTS-79…

Abstract

Purpose

The purpose of this paper is to achieve high accuracy in forecasting generation reliability by accurately evaluating the reliability of power systems. This study uses the RTS-79 reliability test system to measure the method’s effectiveness, using mean absolute percentage error as the performance metrics. Accurate reliability predictions can inform critical decisions related to system design, expansion and maintenance, making this study relevant to power system planning and management.

Design/methodology/approach

This paper proposes a novel approach that uses a radial basis kernel function-based support vector regression method to accurately evaluate the reliability of power systems. The approach selects relevant system features and computes loss of load expectation (LOLE) and expected energy not supplied (EENS) using the analytical unit additional algorithm. The proposed method is evaluated under two scenarios, with changes applied to the load demand side or both the generation system and load profile.

Findings

The proposed method predicts LOLE and EENS with high accuracy, especially in the first scenario. The results demonstrate the method’s effectiveness in forecasting generation reliability. Accurate reliability predictions can inform critical decisions related to system design, expansion and maintenance. Therefore, the findings of this study have significant implications for power system planning and management.

Originality/value

What sets this approach apart is the extraction of several features from both the generation and load sides of the power system, representing a unique contribution to the field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2008

Wlodzimierz Koczara, Zdzislaw Chlodnicki, Emil Ernest, Artur Krasnodebski, Robert Seliga, Neil L. Brown, Bartlomiej Kaminski and Jawad Al‐Tayie

The purpose of this paper is to provide a new theory of adjustable speed decoupled generation which has the potential to challenge existing coupled generation based on a classical…

Abstract

Purpose

The purpose of this paper is to provide a new theory of adjustable speed decoupled generation which has the potential to challenge existing coupled generation based on a classical synchronous generator operating with fixed speed.

Design/methodology/approach

The paper's approach is a theoretical consideration of the drawbacks of conventional fixed speed generation based on a synchronous generator and proposal of problem solutions by the introduction of a decoupled generation system with additional degree of freedom. Computer calculations are used as design and for preliminary verification. Tests in a real laboratory system equipped with modern components such as electrical machines and power electronic converters proved the theory.

Findings

Decoupled generation is realized in a very original way using new blocks, integration method and control. The developed system has been awarded more than six world patents. The system has additional degrees of freedom in speed and grid connection operation.

Originality/value

The research team has concentrated its research over many years and developed a generation system which has been awarded a great number of patents. A special axial flux, light and simple permanent magnet generator was developed and integrated to the prime mover. A three‐phase AC/AC power electronic converter and a DSP controller are integrated to a very small size and low weight. The invented topology provides a very reliable operation, high‐quality AC voltage in fully three‐phase non‐symmetrical load. There were also presentations on world conferences (EPE, PESC, EPE‐PEMC).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2019

Achala Jain and Anupama P. Huddar

The purpose of this paper is to solve economic emission dispatch problem in connection of wind with hydro-thermal units.

Abstract

Purpose

The purpose of this paper is to solve economic emission dispatch problem in connection of wind with hydro-thermal units.

Design/methodology/approach

The proposed hybrid methodology is the joined execution of both the modified salp swarm optimization algorithm (MSSA) with artificial intelligence technique aided with particle swarm optimization (PSO) technique.

Findings

The proposed approach is introduced to figure out the optimal power generated power from the thermal, wind farms and hydro units by minimizing the emission level and cost of generation simultaneously. The best compromise solution of the generation power outputs and related gas emission are subject to the equality and inequality constraints of the system. Here, MSSA is used to generate the optimal combination of thermal generator with the objective of minimum fuel and emission objective function. The proposed method also considers wind speed probability factor via PSO-artificial neural network (ANN) technique and hydro power generation at peak load demand condition to ensure economic utilization.

Originality/value

To validate the advantage of the proposed approach, six- and ten-units thermal systems are studied with fuel and emission cost. For minimizing the fuel and emission cost of the thermal system with the predicted wind speed factor, the proposed approach is used. The proposed approach is actualized in MATLAB/Simulink, and the results are examined with considering generation units and compared with various solution techniques. The comparison reveals the closeness of the proposed approach and proclaims its capability for handling multi-objective optimization problems of power systems.

Details

International Journal of Energy Sector Management, vol. 13 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief…

1661

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Grzegorz Iwanski

Wind‐diesel sets offered as a reliable hybrid isolated power systems with reduction of fuel consumption, consists of variable speed wind turbines and fixed speed diesel engines…

Abstract

Purpose

Wind‐diesel sets offered as a reliable hybrid isolated power systems with reduction of fuel consumption, consists of variable speed wind turbines and fixed speed diesel engines. Load and wind energy variations cause, that the load power of the diesel genset is varied in wide range. Fixed speed generation set operates with the best efficiency only in a narrow range of the load, therefore implementation of a load adaptive, adjustable speed genset may additionally reduce fuel consumption.

Design/methodology/approach

Analysis of the system components model, simulation and laboratory tests on a small‐scale model.

Findings

Topology and output voltage control method of four‐wire adjustable speed autonomous wind‐diesel system dedicated for isolated power plants with high wind penetration.

Research limitations/implications

The paper presents only part of the work which has to be done for the complete system. Load and energy management has to be applied in standalone system, as not in each operating point of proposed wind‐diesel system, can rated load be supplied. To fully prove the proposed system and control concept, tests of megawatt range system are advisable. To evaluate the fuel saving, a real wind and load profile in a selected isolated place is needed.

Practical implications

Every adjustable speed generation systems can save fuel. However, proposed topology in main part consists of known and implemented solutions, therefore costs of the new installation will not be increased significantly.

Originality/value

Proposed costs effective topology of adjustable speed wind‐diesel generation system has not been presented by any other authors. Standalone operation of doubly fed induction generator system is rarely reported in the papers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 June 2011

Yajvender Pal Verma and Ashwani Kumar

With the inclusion of significant wind power into the power system, the unit commitment (UC) has become challenging due to frequent variations in wind power, load and requirement…

Abstract

Purpose

With the inclusion of significant wind power into the power system, the unit commitment (UC) has become challenging due to frequent variations in wind power, load and requirement of reserves with sufficient ramp rate. The pumped storage units with lesser startup time and cost can take care of these sudden variations and reduce their impact on power system operation. The aim of this paper is to provide a solution model for UC problem in a hybrid power system.

Design/methodology/approach

The model developed has been implemented through GAMS optimization tool with CONOPT solver. The model has been called into MATLAB platform by using GAMS‐MATLAB interfacing to obtain solutions.

Findings

The model provides an efficient operating schedule for conventional units and pumped storage units to minimize operating cost and emission. The effects of wind power and load profiles on emission, operating cost and reserve with enough ramping capabilities have been minimized with the use of pumped storage unit. The commitment schedule of thermal and pumped storage units have been obtained with significant wind power integrated into the system for best cost commitment (BCC) and for a combined objective of cost and emission minimization.

Originality/value

This paper finds that the operating cost and emission in a commitment problem can be reduced significantly during variable wind and load conditions in a hybrid system. The model proposed provides operational schedules of conventional and pumped storage units with variable wind power and load conditions throughout operating horizon. The coordinated optimization approach has been implemented on a hybrid system with IEEE‐30 bus system.

Details

International Journal of Energy Sector Management, vol. 5 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 22 November 2011

Saurabh Chanana and Ashwani Kumar

Recently, many countries have been pushing for a higher share of renewable energy sources, especially wind, in their generation mix. However, the intermittent and uncertain nature…

Abstract

Purpose

Recently, many countries have been pushing for a higher share of renewable energy sources, especially wind, in their generation mix. However, the intermittent and uncertain nature of wind power imposes a limit on the extent it can replace the conventional generation resources. In a high wind penetration scenario, the Battery Energy Storage System (BESS) offers a solution to the grid operation problems. The purpose of this paper is to evaluate the merits of price‐based operation of BESS in a real‐time market with high wind penetration using frequency‐linked pricing.

Design/methodology/approach

The authors propose a real‐time market in which real‐time prices are based on the grid frequency. A model for real‐time price‐based operation of a conventional generator and a BESS is presented. Simulations for different wind penetration scenarios are carried out on an isolated area test system. Wind speed sequence is generated using composite wind speed model. A simplified model of wind speed to power conversion is adopted to observe the impact of increase in wind power generation on the grid frequency and the real‐time prices.

Findings

The result of simulations show that BESS not only helps in dealing with uncertainty in wind power forecasts, but also reduces the fluctuations in frequency due to wind power's intermittency. Price‐based operation of BESS results in higher operating revenues by discharging it at peak prices and reduces operating costs by charging it at minimum prices.

Social implications

The study helps in achieving the societal goal of replacing fossil fuel generation by environment friendly generation and reducing green house gas emissions.

Originality/value

The novelty of this paper lies in the use of frequency‐linked pricing in real‐time market and proposing a control algorithm for operating BESS using these price signals.

1 – 10 of over 69000