Search results

1 – 10 of over 9000
Article
Publication date: 1 January 2014

Zhanlong Zhang, Xuemei Xie, Lin Li, Dongping Xiao and Wei He

– The purpose of this study is to calculate the frequency electric field in substation.

Abstract

Purpose

The purpose of this study is to calculate the frequency electric field in substation.

Design/methodology/approach

The paper proposes a novel fast multipole method (FMM) called Super-FMM to solve the PFEF problems in substations. The paper substitutes the original approaches for analytic expansions and translations through equivalent density representations.

Findings

The paper shows that the Super-FMM is more efficient in terms of the complexity of its storage spaces and computational costs compared with the best-known FMM when placed under scenarios with exactly the same error rates.

Research limitations/implications

Using the fast Fourier transform algorithm can further improve the optimization algorithm and computational efficiency.

Originality/value

A novel FMM called Super-FMM is proposed, which has a structure similar to that of the adaptive FMM algorithm, but the paper substitutes the original approaches for analytic expansions and translations through equivalent density representations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 February 2022

Jun Peng, Jiaming Bian, Shuhai Jia, Xilong Kang, Hongqiang Yu and Yaowen Yang

This study aims to address the issue of high-precision measurement of AC electric field. An electro-optical sensor with high sensitivity is proposed for this purpose.

Abstract

Purpose

This study aims to address the issue of high-precision measurement of AC electric field. An electro-optical sensor with high sensitivity is proposed for this purpose.

Design/methodology/approach

The proposed sensor combines electromagnetic induction and fiber Bragg grating (FBG) sensing techniques. It is composed of a sensing probe, a piece or stack of piezoelectric ceramics (PZT) and an FBG. A signal processing circuit is designed to rectify and amplify the induced voltage. The processed signal is applied to the PZT and the deformation of PZT is detected by FBG. Theoretical calculation and simulation are conducted to verify the working principle of the probe. The sensor prototype is fabricated and its performance is tested.

Findings

The results of this study show that the sensor has good linearity and repeatability. The sensor sensitivity is 0.061 pm/Vm−1 in the range from 250 to 17,500 V/m, enabling a measurement resolution of electric field strength of 16.3 V/m. The PZT stack is used to enhance the sensor sensitivity and the resolution can be improved up to 3.15 V/m.

Originality/value

A flexure hinge lever mechanism is used to amplify the deformation of PZT for further enhancement of sensitivity. The results show that the proposed sensor has high sensitivity and can be used for the accurate measurement of an electric field. The proposed sensor could have potential use for electric field measurement in the power industry.

Details

Sensor Review, vol. 42 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 November 2009

Fan Yang, Wei He, Wendong Deng and Tao Chen

The purpose of this paper is to propose an improved charge simulation method (CSM) based on the real‐coded genetic algorithm (GA), in which the tedious testing and adjusting work…

Abstract

Purpose

The purpose of this paper is to propose an improved charge simulation method (CSM) based on the real‐coded genetic algorithm (GA), in which the tedious testing and adjusting work in the traditional CSM is avoided. In addition, less simulation charges are used in the simulation model for the same object compared with the traditional CSM.

Design/methodology/approach

In the improved CSM, the information of testing points are combined with the matching points, hence the size and locations of simulation charges can be only computed by the information of matching points, and the testing calculation in the traditional CSM is avoided. According to the Maxwell equations, an overdetermined equation is reformulated, and an improved GA is used to solve it. The process to create the initial population is improved, boundary condition information of part matching points and human experience are added into the initial population, which enhanced the convergence rate of the search calculation.

Findings

Combining the information of testing points into that of the matching points in the improved CSM, the tedious testing calculation can be avoided, and the GA is effective to solve the overdetermined equation for the improved CSM. By importing the information of part matching points and human experience, the search process can be accelerated and the convergence of the method is ensured. Comparison between the efficiency of traditional CSM and the improved CSM is presented, less simulation charges are used compared with the traditional CSM for the same object.

Research limitations/implications

The improved CSM cannot adjust the count of simulation charges in the equivalent model automatically.

Practical implications

Calculations of a sphere‐plane electrode model and a 64 kV insulator string are carried out to verify the validity of the improved CSM. In addition, it can also be used to compute the power frequency electric field of HV transmission apparatuses.

Originality/value

By improving the process of the traditional CSM and importing the GA, an improved CSM for the calculation of power frequency electric fields produced by high‐voltage apparatuses is presented in the paper, which can avoid the tedious testing and adjusting work in the traditional CSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1129

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2023

Teng Wen, Xiaoyun Wei, Xuebao Li, Boyuan Cao and Zhibin Zhao

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal…

Abstract

Purpose

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal periodic voltage excitation.

Design/methodology/approach

Firstly, the boundary value problem of the transient electric field in the frequency domain is described, and the finite element equation of the FD-FEM is derived by Galerkin’s method. Secondly, the constrained electric field equation on the boundary in the frequency domain (FD-CEFEB) is also derived, which can solve the electric field intensity on the boundary and the dielectric interface with high accuracy. Thirdly, the calculation procedures of the FD-FEM with FD-CEFEB are introduced in detail. Finally, a numerical example of the press-packed insulated gate bipolar transistor under the working condition of the repetitive turn-on and turn-off is given.

Findings

The FD-CEFEB improves numerical accuracy of electric field intensity on the boundary and interfacial charge density, which can be achieved by modifying the existing FD-FEMs’ code in appropriate steps. Moreover, the proposed FD-FEM and the FD-CEFEB will only increase calculation costs by a little compared with the traditional FD-FEMs.

Originality/value

The FD-CEFEB can directly solve the electric field intensity on the boundary and the dielectric interface with high accuracy. This paper provides a new FD-FEM for the transient electric field in the non-sinusoidal steady state with high accuracy, which is suitable for combined insulation structure with a long time constant.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 September 2007

K. Zakowski

This paper sets out to detect and characterize electric fields in the ground (such as stray current fields) using a tandem time/frequency method of signal analysis.

Abstract

Purpose

This paper sets out to detect and characterize electric fields in the ground (such as stray current fields) using a tandem time/frequency method of signal analysis.

Design/methodology/approach

Results were obtained from investigations performed in the presence of a generated electric field with controlled variable characteristics, and in the presence of an electric field generated by a tramline. The analysis of measurement registers was performed using Short‐Time Fourier Transformation. The results were presented in the form of spectrograms, which illustrate changes in the spectral power density of the measured signal versus time.

Findings

Tandem time/frequency analysis reveals the random or deterministic character of the electric field, enabling its complete time/frequency characteristics to be obtained. Such information is inaccessible using exclusively the frequency analysis methods that utilize classical Fourier transformations. Moreover, an analysis of the spectral power density distribution of the signals in three directions on the ground surface makes it possible to define the localization of the field source.

Practical implications

Analysis methods for electric fields in the ground should be adapted to the evaluation of non‐stationary signals because the stray currents are of this type. Such a possibility is given by combined analysis in the domains of time and frequency. This method can be used as complementary to applied measurement techniques of stray current interference.

Originality/value

The method of electric field detection and characterization, as related to stray currents, previously has not been presented in the literature. This method of signal analysis may be adopted for other investigations that are reliant on the registration of voltages or potentials characterized by arbitrary frequencies.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 9000