Search results

1 – 10 of over 73000
Article
Publication date: 25 February 2014

Yi-Chang Wu and Chia-Ho Cheng

The analysis of power flow and mechanical efficiency constitutes an important phase in the design and analysis of gear mechanisms. The aim of this paper is to present a systematic…

Abstract

Purpose

The analysis of power flow and mechanical efficiency constitutes an important phase in the design and analysis of gear mechanisms. The aim of this paper is to present a systematic procedure for the determination of power flow and mechanical efficiency of epicyclic-type transmission mechanisms.

Design/methodology/approach

A novel epicyclic-type in-hub bicycle transmission, which is a split-power type transmission composed of two transmission units and one differential unit, and its clutching sequence table are introduced first. By using the concept of fundamental circuits, the procedure for calculating the angular speed of each link, the ideal torque and power flow of each link, the actual torque and power flow of each link determined by considering gear-mesh losses, and the mechanical efficiency of the transmission mechanism is proposed in a simple, straightforward manner. The mechanical efficiency analysis of epicyclic-type gear mechanisms is largely simplified to overcome tedious and complicated processes of traditionally methods.

Findings

An analysis of the mechanical efficiency of a four-speed automotive automatic transmission completed by Hsu and Huang is used as an example to illustrate the utility and validity of the proposed procedure. The power flow and mechanical efficiency of the presented 16-speed in-hub bicycle transmission are computed, and the power recirculation inside the transmission mechanism at each speed is detected based on the power flow diagram. When power recirculation occurs, the mechanical efficiency of the gear mechanism at the related speed reduces. The mechanical efficiency of this in-hub bicycle transmission is more than 96 percent for each speed. Such an in-hub bicycle transmission possesses reasonable kinematics and high mechanical efficiency and is therefore suitable for further embodiment design and detail design.

Originality/value

The proposed approach is suitable for the mechanical efficiency analysis of all kinds of complicated epicyclic-type transmissions with any number of degrees of freedom and facilitates a less-tedious process of determining mechanical efficiency. It is a useful tool for mechanical engineering designers to evaluate the efficiency performance of the gear mechanism before actually fabricating a prototype as well as measuring the numerical data. It also helps engineering designers to cautiously select feasible gear mechanisms to avoid those configurations with power recirculation in the preliminary design stage which may significantly reduce the time for developing novel in-hub bicycle transmissions.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2021

Sunilkumar Agrawal and Prasanta Kundu

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission…

Abstract

Purpose

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission networks.

Design/methodology/approach

In this analysis, a unified power flow model has been developed for the optimal power flow (OPF) problem for VSC-based high voltage direct current (VSC-HVDC) transmission network and solved using a particle swarm optimization (PSO) algorithm. The impact of the HVDC converter under abnormal conditions considering N-1 line outage contingency is analyzed against the congestion relief of the overall transmission network. The average loadability index is used as a severity indicator and minimized along with overall transmission line losses by replacing each AC line with an HVDC line independently.

Findings

The developed unified OPF (UOPF) model converged successfully with (PSO) algorithm. The OPF problem has satisfied the defined operational constraints of the power system, and comparative results are obtained for objective function with different HVDC test configurations represented in the paper. In addition, the impact of VSC converter location is determined on objective function value.

Originality/value

A novel methodology has been developed for the optimal installation of the converter station for the point-to-point configuration of HVDC transmission. The developed unified OPF model and methodology for selecting the AC bus for converter installation has effectively reduced congestion in transmission lines under single line outage contingency.

Article
Publication date: 4 October 2018

Hong wei Li, Hairong Zhu and Li Pan

To realize the operation optimizing of today’s distribution power system (DPS), like economic dispatch, contingency analysis, and reliability and security assessment etc., it is…

Abstract

Purpose

To realize the operation optimizing of today’s distribution power system (DPS), like economic dispatch, contingency analysis, and reliability and security assessment etc., it is beneficial and indispensable that a faster linear load flow method is adopted with a reasonable accuracy. Considering the high R/X branch ratios and unbalanced features of DPS, the purpose of this paper is to propose a faster and non-iterative linear load flow solution for DPS.

Design/methodology/approach

Based on complex function theory, the derivations of the injection current linear approximation have been proposed for the balanced and the single-, double- and three-phase unbalanced loads of DPS on complex plane. Then, a simple and direct linear load flow has been developed with loop-analysis theory and node-branch incidence matrix.

Findings

The methodology is appropriate for balanced and single-, double- and three-phase hybrid distribution system with different load models. It provides a fast and robust load flow method with a satisfactory accuracy to handle the problems of DPS whenever the load flow solutions are required.

Research limitations/implications

The distributed generators (DGs) with unity or fixed power factors can be easily included. But the power and voltage nodes cannot be dealt with directly and need to be further studied.

Originality/value

By combining the current linear approximation with the loop theory-based method, a new linear load flow method for DPS has been proposed. The method is valid and acute enough for balanced and unbalanced systems and has no convergent problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 3 May 2013

Gianpietro Granelli and Mario Montagna

The purpose of this work is that of providing the guidelines of an efficient implementation of power flow computations using the MATLAB computation environment.

1205

Abstract

Purpose

The purpose of this work is that of providing the guidelines of an efficient implementation of power flow computations using the MATLAB computation environment.

Design/methodology/approach

The goal of obtaining high efficiency from MATLAB programs often proves elusive unless special care is taken in exploiting the vectorising capability of MATLAB programming. In the present paper the implementation of Newton‐Raphson power flow in MATLAB is examined with particular emphasis on the way of obtaining a vectorisable code capable of achieving effective numerical performance by exploiting its formulation in terms of complex variables.

Findings

Tests on actual networks with up to 1,300 buses are presented. They show that the complex power flow is as efficient as the best implementations of the Newton Raphson power flow using real variables, as long as the operations involved are reordered with the aim of exploiting the vectorisation capabilities of the MATLAB environment.

Originality/value

It is shown that improved numerical efficiency in the MATLAB can be obtained through its formulation in terms of complex variables. The complex Newton‐Raphson load flow, not very common in practical uses, is shown to have many desirable qualities from the point of view of MATLAB programming and is presented in detail.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2013

Gheorghe Grigoras and Gheorghe Cartina

The purpose of this paper is to introduce a method based on the fuzzy correlation for modelling of active and reactive powers from the substations of the electrical distribution…

Abstract

Purpose

The purpose of this paper is to introduce a method based on the fuzzy correlation for modelling of active and reactive powers from the substations of the electrical distribution systems, at the peak load.

Design/methodology/approach

Based on the correlation theory, the fuzzy models of the loads can be obtained using a new algorithm. If in the case of the principal/connection station there is sufficient database information for a good forecasting of the load, then for those substations where data are missing (there is no continuous monitoring or the measuring system can be broken for a while) the forecasting of the load can be performed using the correlation studies. The starting point of the algorithm is statistical analysis of the active and reactive curves of the substations and utilization of a fuzzy linear regression model. This can be made for different time windows (window 24 h, window 7 h, etc). The window 24 h can be used successfully to estimate the hourly load on any substation. The other time window (7 h) can be used in the peak load estimation of the substations, using the maximum value of the active power recorded in a reference substation.

Findings

The numerical data show that the fuzzy correlation models can be used with very good results for determination of the peak load corresponding distribution substations, and further with the state estimation of the system. In this study, the influence of the time window size is presented in detail, and the fuzzy correlation models for the peak loads from the distribution substations are obtained.

Originality/value

Starting from the correlation theory, a method of fuzzy modelling of active and reactive powers from the substations of an electrical distribution system is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 December 2021

Wenjin Mao and Hongwei Li

The purpose of this study is to provide a non-iterative linear method to solve the power flow equations of alternating current (AC) power grid. Traditional iterative power flow

Abstract

Purpose

The purpose of this study is to provide a non-iterative linear method to solve the power flow equations of alternating current (AC) power grid. Traditional iterative power flow calculation is limited in speed and reliability, and it is unsuitable for the real-time and online applications of the modern distribution power system (DPS). Thus, it would be of great significance if a fast and flexible linear power flow (LPF) solution could be introduced particularly necessary for the robust and fast control of DPS, especially when the system consists of star and delta connections ZIP load (a constant impedance, Z, load, a constant current, I, load and a constant power, P, load) and the high penetration of distributed solar and wind power generators.

Design/methodology/approach

Based on the features of DPS and considering the approximate balance of three-phase DPS, several approximations corresponding to the three-phase power flow equations have been discussed and analyzed. Then, based on those approximations, two three-phase LPF models have been developed under the polar coordinates. One model has been formulated with the voltage magnitudes [referred to the voltage magniudes based linear power flow method (VMLPF)], and another model has been formulated with the logarithmic transform of voltage magnitudes [referred to the logarithmic transform of voltage based linear power flow method LGLPF)].

Findings

The institute of electrical and electronic engineers (IEEE) 13-bus, 37-bus, 123-bus and an improved 615-bus unbalanced DPSs are used to test the performances of the methods considering star and delta connections ZIP load and PV buses (voltage-controlled buses). The test results validate the effectiveness and accuracy of the proposed two models. Especially when considering the PV buses and delta connection ZIP load, the proposed two models perform much well. Moreover, the results show that VMLPF performs a bit better than LGLPF.

Research limitations/implications

Except for the transformer with Yg–Yg connection winding can be dealt with directly, the transformers with other connections are not discussed in this proposed paper and need to be further studied.

Originality/value

These proposed two models can deal with ZIP load with star and delta connections as well as multi slack buses and PV buses. The single-phase, two-phase and three-phase hybrid networks can be directly included too. The proposed two models are capable of offering enough accuracy level, and they are therefore suitable for online applications that require a large number of repeated power flow calculations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2014

Seyed Masoud Fatemi, Mehrdad Abedi, Behrooz Vahidi, Sajjad Abedi and Hassan Rastegar

The purpose of this paper is to pursue two following main goals: first, theorizing a new concept named as equivalent bus load in order to make a promising simplification over power

Abstract

Purpose

The purpose of this paper is to pursue two following main goals: first, theorizing a new concept named as equivalent bus load in order to make a promising simplification over power system analysis. Second, proposing an outstanding fast and simple approach based on introduced concept for voltage estimation after multiple component outages while satisfying required accuracy.

Design/methodology/approach

Equivalent load bus theory introduces three transfer matrices that describe power system topology. Mentioned matrices could be calculated simply after system reconfiguration without matrix inversion. Using transfer matrices a large-scale power system can be modeled by a simple two-bus power system from the viewpoint of any desired bus so that load flow calculation leads to same value. The analysis of simplified power system yields to extract a new incremental model based on equivalent bus load theory that will be distinguished as an outstanding fast method for voltage estimation aim.

Findings

A deep study for fast voltage estimation aim is dedicated to evaluate proposed method from the accuracy and quickness point of view and the outcomes are compared to a well-known method as Distribution Factors (DF). Results and computational times unveil that presented approach is more accurate and much faster.

Originality/value

A novel and new fast voltage estimation method for assessment of power system component outages is introduced.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Uma Velayutham, Lakshmi Ponnusamy and Gomathi Venugopal

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a…

Abstract

Purpose

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a power system. This security analysis helps independent system operator (ISO) to have a better planning and market clearing criteria during any operating state of the system.

Design/methodology/approach

A multi-objective optimization problem has been developed including real power performance index (RPPI) and expected security cost (ESC). A security constrained optimal power flow has been developed as expected security cost optimal power flow problem which gives the probabilities of operating the system in all possible pre-contingency and post-contingency states subjected to various equality and inequality constraints. Maximizing social welfare is the objective function considered for normal state, while minimizing compensations for generations rescheduling and maximizing social welfare are the objectives in case of contingency states. The proposed work is viewed as a two level problem wherein the upper-level problem is to optimally locate IPFC using RPPI and the lower-level problem is to minimize the ESC subjected to various system constraints. Both upper-level and lower-level problem are solved using particle swarm optimization and The performance of the proposed algorithm is tested under severe line outages and has been validated using IEEE 30 bus system.

Findings

The proposed methodology shows that IPFC controls the power flows in the network without generation rescheduling or topological changes and thus improves the performance of the system. It is found that the benefit achieved in the ESC due to the installation of IPFC is greater than the annual investment cost of the device. ISO cannot achieve minimum total system cost by merely rescheduling generators. Instead of rescheduling, FACTS devices can be used for compensation by achieving minimum cost. IPFC can be used to compensate the congested lines and transfer cheaper power from generators to consumers.

Originality/value

Operational reliability, financial profitability and efficient utilization of the existing transmission system infrastructure has been achieved using single FACTS device. Instead of using multiple FATCS devices, if a single FACTS device like IPFC which itself can compensate several transmission lines is used, then in addition to the facility for independently controlled reactive (series) compensation of each individual line, it provides a capability to directly transfer real power between the compensated lines. Hence an attempt has been made in this paper to incorporate IPFC for relieving congestion in a deregulated environment. However, no previous researches have considered incorporating compensation of multi-transmission line using single IPFC in minimizing ESC. Thus, in this paper, the authors indicate how much the ESC is reduced by installing IPFC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 January 2022

Hongwei Li, Xiao Wang, Junmu Lin, Lei Wu and Tong Liu

This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and…

Abstract

Purpose

This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and economic alternative to millions of residential loads. The power flow (PF) in the DC network has some similarities with the alternative current case, but there are important differences that deserve to be further concerned. Moreover, the dispatchable distributed generators (DGs) in DC network can realize the flexible voltage control based on droop-control or virtual impedance-based methods. Thus, DC PF problems are still required to further study, such as hosting all load types and different DGs.

Design/methodology/approach

The DC power analysis was explored in this paper, and an improved Newton–Raphson based linear PF method has been proposed. Considering that constant impedance (CR), constant current (CI) and constant power (CP) (ZIP) loads can get close to the practical load level, ZIP load has been merged into the linear PF method. Moreover, DGs are much common and can be easily connected to the DC grid, so V nodes and the dispatchable DG units with droop control have been further taken into account in the proposed method.

Findings

The performance and advantages of the proposed method are investigated based on the results of the various test systems. The two existing linear models were used to compare with the proposed linear method. The numerical results demonstrate enough accuracy, strong robustness and high computational efficiency of the proposed linear method even in the heavily-loaded conditions and with 10 times the line resistances.

Originality/value

The conductance corresponding to each constant resistance load and the equivalent conductance for the dispatchable unit can be directly merged into the self-conductance (diagonal component) of the conductance matrix. The constant current loads and the injection powers from dispatchable DG units can be treated as the current sources in the proposed method. All of those make the PF model much clear and simple. It is capable of offering enough accuracy level, and it is suitable for applications in DC networks that require a large number of repeated PF calculations to optimize the energy flows under different scenarios.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 73000