Search results

1 – 10 of 85
Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 12 July 2023

Augustine Senanu Komla Kukah, De-Graft Owusu-Manu, Edward Badu, David J. Edwards and Eric Asamoah

Public-private partnership (PPP) power projects are associated with varying risk factors. This paper aims to develop a fuzzy quantitative risk allocation model (QRAM) to guide…

Abstract

Purpose

Public-private partnership (PPP) power projects are associated with varying risk factors. This paper aims to develop a fuzzy quantitative risk allocation model (QRAM) to guide decision-making on risk allocation in PPP power projects in Ghana.

Design/methodology/approach

A total of 67 risk factors and 9 risk allocation criteria were established from literature and ranked in a two-round Delphi survey using questionnaires. The fuzzy synthetic evaluation method was used in developing the risk allocation model.

Findings

The model’s output variable is the risk allocation proportions between the public body and private body based on their capability to manage the risk factors. Out of the 37 critical risk factors, the public sector was allocated 12 risk factors with proportions = 50%, while the private sector was allocated 25 risk factors with proportions = 50%.

Originality/value

To the best of the authors’ knowledge, this research presents the first attempt in Ghana at endeavouring to develop a QRAM for PPP power projects. There is confidence in the model to efficiently allocate risks emanating from PPP power projects.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 April 2024

Ting Zhou, Yingjie Wei, Jian Niu and Yuxin Jie

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a…

Abstract

Purpose

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a new hybrid optimization algorithm that combines the characteristics of biogeography-based optimization (BBO), invasive weed optimization (IWO) and genetic algorithms (GAs).

Design/methodology/approach

The significant difference between the new algorithm and original optimizers is a periodic selection scheme for offspring. The selection criterion is a function of cyclic discharge and the fitness of populations. It differs from traditional optimization methods where the elite always gains advantages. With this method, fitter populations may still be rejected, while poorer ones might be likely retained. The selection scheme is applied to help escape from local optima and maintain solution diversity.

Findings

The efficiency of the proposed method is tested on 13 high-dimensional, nonlinear benchmark functions and a homogenous slope stability problem. The results of the benchmark function show that the new method performs well in terms of accuracy and solution diversity. The algorithm converges with a magnitude of 10-4, compared to 102 in BBO and 10-2 in IWO. In the slope stability problem, the safety factor acquired by the analogy of slope erosion (ASE) is closer to the recommended value.

Originality/value

This paper introduces a periodic selection strategy and constructs a hybrid optimizer, which enhances the global exploration capacity of metaheuristic algorithms.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 December 2022

Javaid Ahmad Wani and Shabir Ahmad Ganaie

The current study aims to map the scientific output of grey literature (GL) through bibliometric approaches.

Abstract

Purpose

The current study aims to map the scientific output of grey literature (GL) through bibliometric approaches.

Design/methodology/approach

The source for data extraction is a comprehensive “indexing and abstracting” database, “Web of Science” (WOS). A lexical title search was applied to get the corpus of the study – a total of 4,599 articles were extracted for data analysis and visualisation. Further, the data were analysed by using the data analytical tools, R-studio and VOSViewer.

Findings

The findings showed that the “publications” have substantially grown up during the timeline. The most productive phase (2018–2021) resulted in 47% of articles. The prominent sources were PLOS One and NeuroImage. The highest number of papers were contributed by Haddaway and Kumar. The most relevant countries were the USA and UK.

Practical implications

The study is useful for researchers interested in the GL research domain. The study helps to understand the evolution of the GL to provide research support further in this area.

Originality/value

The present study provides a new orientation to the scholarly output of the GL. The study is rigorous and all-inclusive based on analytical operations like the research networks, collaboration and visualisation. To the best of the authors' knowledge, this manuscript is original, and no similar works have been found with the research objectives included here.

Details

Library Hi Tech, vol. 42 no. 1
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 26 December 2023

Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi and Songyi Wang

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental…

Abstract

Purpose

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.

Design/methodology/approach

This study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.

Findings

The result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.

Research limitations/implications

The optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.

Originality/value

In prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.

Details

Industrial Management & Data Systems, vol. 124 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 5 October 2022

Wanjun Yin and Xuan Qin

This paper aims to reduce the impact of disordered charging of large-scale electric vehicles (EVs) on the grid. EV is great significance for environmental protection, energy…

Abstract

Purpose

This paper aims to reduce the impact of disordered charging of large-scale electric vehicles (EVs) on the grid. EV is great significance for environmental protection, energy conservation and emission reduction to replace fuel vehicles with EVs. However, as a kind of random mobile load, large-scale integration into the power grid may lead to power quality problems such as line overload, line loss increase and voltage reduction. This paper realizes the orderly charging of electric vehicles and the safe operation of the distribution network by optimizing the dispatching scheme.

Design/methodology/approach

This paper takes the typical IEEE-33 node distribution system as the research object, adopts the improved particle swarm optimization algorithm and takes the minimum operation cost, the minimum environmental pollution, the minimum standard deviation of daily load, the minimum peak valley difference of load, the minimum node voltage offset rate and the minimum system grid loss rate as the optimization objectives.

Findings

Controlling the disordered charging of large-scale electric vehicles by optimizing the dispatching algorithm can realize the full consumption of renewable energy and the safe operation of the power grid.

Originality/value

Results show that the proposed scheme can realize the transfer of charging load in time and space, so as to stabilize the load fluctuation of distribution grid, improve the operation quality of power grid, reduce the charging cost of users and achieve the expected research objectives.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 January 2024

Chuanmin Mi, Xiaoyi Gou, Yating Ren, Bo Zeng, Jamshed Khalid and Yuhuan Ma

Accurate prediction of seasonal power consumption trends with impact disturbances provides a scientific basis for the flexible balance of the long timescale power system…

Abstract

Purpose

Accurate prediction of seasonal power consumption trends with impact disturbances provides a scientific basis for the flexible balance of the long timescale power system. Consequently, it fosters reasonable scheduling plans, ensuring the safety of the system and improving the economic dispatching efficiency of the power system.

Design/methodology/approach

First, a new seasonal grey buffer operator in the longitudinal and transverse dimensional perspectives is designed. Then, a new seasonal grey modeling approach that integrates the new operator, full real domain fractional order accumulation generation technique, grey prediction modeling tool and fruit fly optimization algorithm is proposed. Moreover, the rationality, scientificity and superiority of the new approach are verified by designing 24 seasonal electricity consumption forecasting approaches, incorporating case study and amalgamating qualitative and quantitative research.

Findings

Compared with other comparative models, the new approach has superior mean absolute percentage error and mean absolute error. Furthermore, the research results show that the new method provides a scientific and effective mathematical method for solving the seasonal trend power consumption forecasting modeling with impact disturbance.

Originality/value

Considering the development trend of longitudinal and transverse dimensions of seasonal data with impact disturbance and the differences in each stage, a new grey buffer operator is constructed, and a new seasonal grey modeling approach with multi-method fusion is proposed to solve the seasonal power consumption forecasting problem.

Highlights

The highlights of the paper are as follows:

  1. A new seasonal grey buffer operator is constructed.

  2. The impact of shock perturbations on seasonal data trends is effectively mitigated.

  3. A novel seasonal grey forecasting approach with multi-method fusion is proposed.

  4. Seasonal electricity consumption is successfully predicted by the novel approach.

  5. The way to adjust China's power system flexibility in the future is analyzed.

A new seasonal grey buffer operator is constructed.

The impact of shock perturbations on seasonal data trends is effectively mitigated.

A novel seasonal grey forecasting approach with multi-method fusion is proposed.

Seasonal electricity consumption is successfully predicted by the novel approach.

The way to adjust China's power system flexibility in the future is analyzed.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of 85