Search results

1 – 10 of over 45000
Article
Publication date: 22 August 2023

Chee-Hua Chin, Winnie Poh Ming Wong, Tat-Huei Cham, Jun Zhou Thong and Jill Pei-Wah Ling

This study aims to investigate how artificial intelligence (AI)-powered smart home devices affect young consumers' requirements for convenience, support, security and monitoring…

Abstract

Purpose

This study aims to investigate how artificial intelligence (AI)-powered smart home devices affect young consumers' requirements for convenience, support, security and monitoring, as well as their ability to advance environmental sustainability. This study also examines the variables that impact users' motivation to use AI-powered smart home devices, such as perceived value, ease of use, social presence, identity, technology security and the moderating impact of trust.

Design/methodology/approach

The responses from residents of Sarawak, Malaysia, were collected through online questionnaires. This study aimed to examine the perceptions of millennials and zillennials towards their trust and adoption of AI-powered devices. This study used a quantitative approach, and the relationships among the study constructs were analysed using partial least squares - structural equation modelling.

Findings

The present study found that perceived usefulness, ease of use and social presence were the main motivators among actual and potential users of smart home devices, especially in determining their intentions to use and actual usage. Additionally, there was a moderating effect of trust on the relationship between perceived ease of use, social presence, social identity and intention to use AI-powered devices in smart homes.

Originality/value

To the best of the authors’ knowledge, this is one of the first studies to examine the factors influencing smart technology adoption. This study provided meaningful insights on the development of strategies for the key stakeholders to enhance the adoption and usage of AI-powered smart home devices in Sarawak, one of the promising Borneo states. Additionally, this study contributed to the growing body of knowledge on the associations between technology acceptance model dimensions, intention and actual usage of smart technology, with the moderating impact of trust.

Details

Young Consumers, vol. 25 no. 1
Type: Research Article
ISSN: 1747-3616

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 September 2019

Zhenmin Wang, Wenyan Fan, Fangxiang Xie and Chunxian Ye

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of…

Abstract

Purpose

This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of large volume and weight, low performance and low efficiency of traditional plasma power supply.

Design/methodology/approach

At present, conventional silicon (Si) power devices’ switching performance is close to the theoretical limit determined by its material properties; the next-generation silicon carbide (SiC) power devices with outstanding advantages can be used to optimal design. This 8 kW LLC resonant converter prototype with silicon carbide (SiC) power devices with a modulated switching frequency ranges from 100  to 400 kHz.

Findings

The experimental results show that the topology, switching loss, rectifier loss, transformer loss and drive circuit of the full-bridge LLC silicon carbide (SiC) plasma power supply can be optimized.

Research limitations/implications

Due to the selected research object (plasma power supply), this study may have limited universality. The authors encourage the study of high frequency resonant converters for other applications such as argon arc welding.

Practical implications

This study provides a practical application for users to improve the quality of plasma welding.

Originality/value

The experimental results show that the full-bridge LLC silicon carbide (SiC) plasma power supply is preferred in operation under conditions of high frequency and high voltage. And its efficiency can reach 98%, making it lighter, more compact and more efficient than previous designs.

Details

Circuit World, vol. 45 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 October 2019

Elham Ali Shammar and Ammar Thabit Zahary

Internet has changed radically in the way people interact in the virtual world, in their careers or social relationships. IoT technology has added a new vision to this process by…

6468

Abstract

Purpose

Internet has changed radically in the way people interact in the virtual world, in their careers or social relationships. IoT technology has added a new vision to this process by enabling connections between smart objects and humans, and also between smart objects themselves, which leads to anything, anytime, anywhere, and any media communications. IoT allows objects to physically see, hear, think, and perform tasks by making them talk to each other, share information and coordinate decisions. To enable the vision of IoT, it utilizes technologies such as ubiquitous computing, context awareness, RFID, WSN, embedded devices, CPS, communication technologies, and internet protocols. IoT is considered to be the future internet, which is significantly different from the Internet we use today. The purpose of this paper is to provide up-to-date literature on trends of IoT research which is driven by the need for convergence of several interdisciplinary technologies and new applications.

Design/methodology/approach

A comprehensive IoT literature review has been performed in this paper as a survey. The survey starts by providing an overview of IoT concepts, visions and evolutions. IoT architectures are also explored. Then, the most important components of IoT are discussed including a thorough discussion of IoT operating systems such as Tiny OS, Contiki OS, FreeRTOS, and RIOT. A review of IoT applications is also presented in this paper and finally, IoT challenges that can be recently encountered by researchers are introduced.

Findings

Studies of IoT literature and projects show the disproportionate importance of technology in IoT projects, which are often driven by technological interventions rather than innovation in the business model. There are a number of serious concerns about the dangers of IoT growth, particularly in the areas of privacy and security; hence, industry and government began addressing these concerns. At the end, what makes IoT exciting is that we do not yet know the exact use cases which would have the ability to significantly influence our lives.

Originality/value

This survey provides a comprehensive literature review on IoT techniques, operating systems and trends.

Details

Library Hi Tech, vol. 38 no. 1
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 31 July 2007

Kaiçar Ammous, Slim Abid and Anis Ammous

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Abstract

Purpose

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Design/methodology/approach

Accurate prediction of temperature variation of power semiconductor devices in power electronic circuits is important for obtaining optimum designs and estimating reliability levels. Temperature estimation of power electronic devices has generally been performed using transient thermal equivalent circuits. This paper has studied the thermal behaviour of the power modules. The study leads to correcting the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on multidimensional thermal phenomena in the structure.

Findings

The classic analysis of thermal phenomena in the multichip structures, independently of powers’ dissipated magnitude and boundary conditions, is not correct. An advanced 1D thermal model based on the finite element method is proposed. It takes into account the effect of the heat‐spreading angle of the different devices in the module.

Originality/value

The paper focuses on mathematical model of the thermal behaviour in the power module. The study leads to a correction of the junction temperature values estimated from the transient thermal impedance of each component given by manufacturers. The proposed model gives a good trade‐off between accuracy, efficiency and simulation cost.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 1989

J.R. Tyler and D.K. Andrade

Recent developments in microwave GaAs technology are yielding devices with higher power capabilities and increased levels of integration. The mechanical and thermal properties of…

Abstract

Recent developments in microwave GaAs technology are yielding devices with higher power capabilities and increased levels of integration. The mechanical and thermal properties of GaAs and other microwave materials play a key role in the design and assembly of microwave power circuits. Thermal management is a critical element of microwave power circuit design. Thermal properties of microwave materials are discussed and compared with standard microelectronic materials. Material selection criteria are described. Assembly and packaging techniques also affect the overall performance of the GaAs power circuit. The high operating frequencies of microwave circuits make ordinary circuit elements, such as wire bonds and printed conductors, reactive. In addition, electrical performance criteria, such as high current or low impedance, create unique assembly demands. The successful development of a GaAs‐based microwave product is dependent on careful attention to the material properties and precise assembly methods. Techniques of automated assembly and processing are discussed, with ah eye towards maintaining high quality and reliability.

Details

Microelectronics International, vol. 6 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 14 November 2016

Ursula Plesner and Elena Raviola

The purpose of this paper is to investigate what role particular new management devices play in the development of the news profession in an organizational setting shifting to new…

2895

Abstract

Purpose

The purpose of this paper is to investigate what role particular new management devices play in the development of the news profession in an organizational setting shifting to new technologies.

Design/methodology/approach

This is studied through of observations of work practices in the newsroom and through documentary research and qualitative interviews with managers, editors, and other professionals.

Findings

It is shown that management devices such as the news table and the news concept are central to the reorganization of news work, as they realize managers’ strategies, just like they produce new practices and power relationships. It is shown that the devices produce increased collaboration among journalists and interaction between managers and output journalists, that mundane work and power is delegated to technological devices and that news products are increasingly standardized.

Practical implications

The wider implications of these findings seem to be a change in the journalistic profession: TV news journalism is becoming less individualistic and more collective and professionalism becomes a matter of understanding and realizing the news organization’s strategy, rather than following a more individual agenda.

Originality/value

The paper’s originality lies in showing that profession and management are not opposed to each other, but can be seen as a continuum on which journalistic and managerial tasks become intertwined. This is in contrast to previous research on news work. Furthermore, the paper’s focus on devices opens up for conceptualizing power in the newsroom as distributed across a network of people and things, rather executed by managers alone.

Details

Journal of Organizational Change Management, vol. 29 no. 7
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 18 September 2021

Sara V. Fernandez, David Sadat, Farita Tasnim, Daniel Acosta, Laura Schwendeman, Shirin Shahsavari and Canan Dagdeviren

Although conformable devices are commonly designed to couple with the human body for personalized and localized medicine, their applications are expanding rapidly. This paper aims…

Abstract

Purpose

Although conformable devices are commonly designed to couple with the human body for personalized and localized medicine, their applications are expanding rapidly. This paper aims to delineate this expansion and predict greater implications in diverse fields.

Design/methodology/approach

Today’s device technologies continue to face fundamental obstacles preventing their seamless integration with target objects to effectively access, evaluate and alter self-specific physical patterns, while still providing physical comfort and enabling continuous data collection. Due to their extreme mechanical compliance, conformable devices permit the query of signals occurring at interfaces so as to decode and encode biological, chemical and mechanical patterns with high resolution, precision and accuracy. These unique and versatile capabilities allow for a marked change in the approach to tackling scientific questions, with the ability to address societal challenges at large.

Findings

Here, this study highlights the current state of these devices in a wide range of fields, such as interactive teaching, textiles, robotics, buildings and infrastructure, agriculture, climate and space, and further forecasts essential features of these devices in the near future.

Originality/value

This study justifies conformable devices’ growing utility through a novel quantitative analysis methodology that indexes peer-reviewed journal articles based on specific keywords, whereby this study tracks keyword frequency over time across specific fields in conjunction with conformability-like topics. The resulting trends’ trajectories provide the foundation for this study’s future projections. This study concludes with a perspective on the possible challenges concomitant with a ubiquitous presence of these technologies, including manufacturing, wireless communication, storage, compression, privacy and sharing of data, environmental sustainability, avoidance of inequality and bias and collaboration between stakeholders at all levels of impact.

Details

foresight, vol. 24 no. 1
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 6 March 2017

Oscar Lucia, Hector Sarnago and José M. Burdio

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction…

Abstract

Purpose

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction heating systems and gives some examples and highlights some future design trends and perspectives.

Design/methodology/approach

The benefits of WBG semiconductors are reviewed with a special emphasis on induction heating applications.

Findings

WBG devices enable the design of higher-performance induction heating power supplies. A significant selection of the reported converters is discussed, highlighting the benefits of this technology.

Originality/value

This paper highlights the benefits of WBG semiconductors and their potential to change and improve induction heating technology in the next years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 April 2020

Ananthan Nagarajan, Sivachandran P., Suganyadevi M.V. and Muthukumar P.

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Abstract

Purpose

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Design/methodology/approach

The work carried out in the Facts device and power quality issues.

Findings

Maintaining the quality of electric power is always a challenging task. The effect of power electronics devices leads to improper power quality. The use of FACTS devices is preferably the best approach to treat power-quality-related problems. Usually, all FACTS devices are constructed to operate on the side of either the source side or the load.

Originality/value

This paper explores a broad comprehensive study of various types of power quality problems and classification of FACTS devices with its recent developments. Furthermore unified power quality conditioner (UPQC) is particularly reviewed to highlight the advantages over other compensating devices. An exhaustive study of literature has been carried out and most significant concepts are presented

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 45000