Search results

1 – 10 of over 42000
Article
Publication date: 12 October 2020

Xi Luo, Yingjie Zhang and Lin Zhang

The purpose of this paper is to improve the positioning accuracy of 6-Dof serial robot by the way of error compensation and sensitivity analysis.

Abstract

Purpose

The purpose of this paper is to improve the positioning accuracy of 6-Dof serial robot by the way of error compensation and sensitivity analysis.

Design/methodology/approach

In this paper, the Denavit–Hartenberg matrix is used to construct the kinematics models of the robot; the effects from individual joint and several joints on the end effector are estimated by simulation. Then, an error model based on joint clearance is proposed so that the positioning accuracy at any position of joints can be predicted for compensation. Through the simulation of the curve path, the validity of the error compensation model is verified. Finally, the experimental results show that the error compensation method can improve the positioning accuracy of a two joint exoskeleton robot by nearly 76.46%.

Findings

Through the analysis of joint error sensitivity, it is found that the first three joints, especially joint 2, contribute a lot to the positioning accuracy of the robot, which provides guidance for the accuracy allocation of the robot. In addition, this paper creatively puts forward the error model based on joint clearance, and the error compensation method which decouples the positioning accuracy into joint errors.

Originality/value

It provides a new idea for error modeling and error compensation of 6-Dof serial robot. Combining sensitivity analysis results with error compensation can effectively improve the positioning accuracy of the robot, and provide convenience for welding robot and other robots that need high positioning accuracy.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2020

Kamil Krasuski and Janusz Ćwiklak

The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy

Abstract

Purpose

The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy positioning. The paper particularly focuses on identification and an analysis of the accuracy of aircraft positioning for the DGNSS measuring technique.

Design/methodology/approach

The investigation uses the DGNSS method of positioning, which is based on using the model of single code differences for global navigation satellite system (GNSS) observations. In the research experiment, the authors used single-frequency code observations in the global positioning system (GPS)/global navigation satellite system (GLONASS) system from the on-board receiver Topcon HiperPro and the reference station REF1 (reference station for the airport military EPDE in Deblin in south-eastern Poland). The geodetic Topcon HiperPro receiver was installed in Cessna 172 plane in the aviation test. The paper presents the new methodology in the DGNSS solution in air navigation. The aircraft position was estimated using a “weighted mean” scheme for differential global positioning system and differential global navigation satellite system solution, respectively. The final resultant position of aircraft was compared with precise real-time kinematic – on the fly solution.

Findings

In the investigations it was specified that the average accuracy of positioning the aircraft Cessna 172 in the geocentric coordinates XYZ equals approximately: +0.03 ÷ +0.33 m along the x-axis, −0.02 ÷ +0.14 m along the y-axis and approximately +0.02 ÷ −0.15 m along the z-axis. Moreover, the root mean square errors determining the measure of the accuracy of positioning of the Cessna 172 for the DGNSS differential technique in the geocentric coordinates XYZ, are below 1.2 m.

Research limitations/implications

In research, the data from GNSS onboard receiver and also GNSS reference receiver are needed. In addition, the pseudo-range corrections from the base stations were applied in the observation model of the DGNSS solution.

Practical implications

The presented research method can be used in a ground based augmentation system (GBAS) augmentation system, whereas the GBAS system is still not applied in Polish aviation.

Social implications

The paper is destined for people who work in the area of aviation and air transport.

Originality/value

The study presents the DGNSS differential technique as a precise method for recovery of aircraft position in civil aviation and this method can be also used in the positioning of aircraft based on GPS and GLONASS code observations.

Details

Sensor Review, vol. 40 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Yong Liu, Dingbing Shi and Steven Baard Skaar

Vision-based positioning without camera calibration, using uncalibrated industrial robots, is a challenging research problem. To address the issue, an uncalibrated industrial…

Abstract

Purpose

Vision-based positioning without camera calibration, using uncalibrated industrial robots, is a challenging research problem. To address the issue, an uncalibrated industrial robot real-time positioning system has been developed in this paper. The paper aims to discuss these issues.

Design/methodology/approach

The software and hardware of this system as well as the methodology are described. Direct and inverse kinematics equations that map joint space into “camera space” are developed. The camera-space manipulation (CSM) algorithm has been employed and improved with varying weights on camera samples of the robot end effector, and the improved CSM is named VW-CSM. The experiments of robot positioning have been conducted using the traditional CSM algorithm and the varying-weight CSM (VW-CSM) algorithm, respectively, both without separate camera calibration. The impact on the accuracy and real-time performance of the system caused by different weights has been examined and discussed.

Findings

The experimental results show that the accuracy and real-time performance of the system with the VW-CSM algorithm is better than the one with using the original CSM algorithm, and the impact on the accuracy and real-time performance of the system caused by different weights has been revealed.

Originality/value

The accuracy and real-time performance of the system with the VW-CSM algorithm is verified. These results prove that the developed system using the VW-CSM algorithm can satisfy the requirements of most industrial applications and can be widely used in the field of industrial robots.

Details

Industrial Robot: An International Journal, vol. 41 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 13 April 2022

Shuanggao Li, Zhichao Huang, Qi Zeng and Xiang Huang

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple…

Abstract

Purpose

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple measurement instruments and automatic assisted devices is being adopted. To achieve the complete data of all assembly features, measurement devices need to be placed at different positions, and the flexible and efficient transfer relies on Automated Guided Vehicles (AGVs) and robots in the large-size space and close range. This paper aims to improve the automatic station transfer in accuracy and flexibility.

Design/methodology/approach

A transferring system with Light Detection and Ranging (LiDAR) and markers is established. The map coupling for navigation is optimized. Markers are distributed according to the accumulated uncertainties. The path planning method applied to the collaborative measurement is proposed for better accuracy. The motion planning method is optimized for better positioning accuracy.

Findings

A transferring system is constructed and the system is verified in the laboratory. Experimental results show that the proposed system effectively improves positioning accuracy and efficiency, which improves the station transfer for the cooperative measurement.

Originality/value

A Transferring system for collaborative measurement is proposed. The optimized navigation method extends the application of visual markers. With this system, AGV is capable of the cooperative measurement of large aircraft structural parts.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 28 November 2018

Qigao Fan, Jie Jia, Peng Pan, Hai Zhang and Yan Sun

The purpose of this paper is to relate to the real-time navigation and tracking of pedestrians in a closed environment. To restrain accumulated error of low-cost…

Abstract

Purpose

The purpose of this paper is to relate to the real-time navigation and tracking of pedestrians in a closed environment. To restrain accumulated error of low-cost microelectromechanical system inertial navigation system and adapt to the real-time navigation of pedestrians at different speeds, the authors proposed an improved inertial navigation system (INS)/pedestrian dead reckoning (PDR)/ultra wideband (UWB) integrated positioning method for indoor foot-mounted pedestrians.

Design/methodology/approach

This paper proposes a self-adaptive integrated positioning algorithm that can recognize multi-gait and realize a high accurate pedestrian multi-gait indoor positioning. First, the corresponding gait method is used to detect different gaits of pedestrians at different velocities; second, the INS/PDR/UWB integrated system is used to get the positioning information. Thus, the INS/UWB integrated system is used when the pedestrian moves at normal speed; the PDR/UWB integrated system is used when the pedestrian moves at rapid speed. Finally, the adaptive Kalman filter correction method is adopted to modify system errors and improve the positioning performance of integrated system.

Findings

The algorithm presented in this paper improves performance of indoor pedestrian integrated positioning system from three aspects: in the view of different pedestrian gaits at different speeds, the zero velocity detection and stride frequency detection are adopted on the integrated positioning system. Further, the accuracy of inertial positioning systems can be improved; the attitude fusion filter is used to obtain the optimal quaternion and improve the accuracy of INS positioning system and PDR positioning system; because of the errors of adaptive integrated positioning system, the adaptive filter is proposed to correct errors and improve integrated positioning accuracy and stability. The adaptive filtering algorithm can effectively restrain the divergence problem caused by outliers. Compared to the KF algorithm, AKF algorithm can better improve the fault tolerance and precision of integrated positioning system.

Originality/value

The INS/PDR/UWB integrated system is built to track pedestrian position and attitude. Finally, an adaptive Kalman filter is used to improve the accuracy and stability of integrated positioning system.

Article
Publication date: 7 August 2017

Wilson E. Sakpere, Nhlanhla Boyfriend Wilton Mlitwa and Michael Adeyeye Oshin

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and…

Abstract

Purpose

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system.

Design/methodology/approach

The study followed a quantitative and experimental method of empirical enquiry and software engineering and synthesis research methods. The study further entails three implementation processes, namely, map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the near field communication (NFC) technology.

Findings

The approach and findings revealed that the capability of NFC in leveraging its low-cost infrastructure of passive tags, its availability in mobile devices and the ubiquity of the mobile device provided a cost-effective solution with impressive accuracy and usability. The positioning accuracy achieved was less than 9 cm. The usability improved from 44 to 96 per cent based on feedbacks given by respondents who tested the application in an indoor environment. These showed that NFC is a viable alternative to resolve the challenges identified in previous solutions and technologies.

Research limitations/implications

The major limitation of the navigation application was that there is no real-time update of user position. This can be investigated and extended further by using NFC in a hybrid make-up with WLAN, radio-frequency identification (RFID) or Bluetooth as a cost-effective solution for real-time indoor positioning because of their coverage and existing infrastructures. The hybrid positioning model, which merges two or more techniques or technologies, is becoming more popular and will improve its accuracy, robustness and usability. In addition, it will balance complexity, compensate for the limitations in the technologies and achieve real-time mobile indoor navigation. Although the presence of WLAN, RFID and Bluetooth technologies are likely to result in system complexity and high cost, NFC will reduce the system’s complexity and balance the trade-off.

Practical implications

Whilst limitations in existing indoor navigation technologies meant putting up with poor signal and poor communication capabilities, outcomes of the NFC framework will offer valuable insight. It presents new possibilities on how to overcome signal quality limitations at improved turn-around time in constrained indoor spaces.

Social implications

The innovations have a direct positive social impact in that it will offer new solutions to mobile communications in the previously impossible terrains such as underground platforms and densely covered spaces. With the ability to operate mobile applications without signal inhibitions, the quality of communication – and ultimately, life opportunities – are enhanced.

Originality/value

While navigating, users face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. Hence, as a contribution, this paper presents a symbolic map and path architecture of a floor of the test-bed building that was uploaded to OpenStreetMap. Furthermore, the implementation of the RFID and the NFC architectures produced new insight on how to redress the limitations in challenged spaces. In addition, a prototype mobile indoor navigation application was developed and implemented, offering novel solution to the practical problems inhibiting navigation in indoor challenged spaces – a practical contribution to the community of practice.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 3 July 2007

Jürgen Bohn

To describe the architecture of iPOS (short for iPAQ positioning system), a novel fault‐tolerant and adaptive self‐positioning system with quality‐of‐service (QoS) guarantees for…

Abstract

Purpose

To describe the architecture of iPOS (short for iPAQ positioning system), a novel fault‐tolerant and adaptive self‐positioning system with quality‐of‐service (QoS) guarantees for resource‐limited mobile devices.

Design/methodology/approach

The iPOS architecture is based on a novel sensor modelling technique in combination with a probabilistic data‐fusion engine, which is capable of efficiently combining the location information obtained from an arbitrary number of heterogeneous location sensors. As a proof of concept, the paper present a prototypical implementation for handheld devices, which was evaluated by means of practical experiments.

Findings

A major advantage of the iPOS positioning system is its extensibility and flexibility, which is achieved by means of an open plugin architecture and the support of global positioning coordinates according to the WGS‐84 standard. The iPOS system scales very well with respect to the number of sensor plugins that can be operated in parallel. The main limiting factor for the number of supported active plugins is the amount of available system resources on the MoD. With regard to recognition, the experimental results indicate a good accuracy of the fusion‐based positioning system in comparison to the accuracy of the individual sensing technologies. Thanks to the explicit modelling of reliable sensor events, the iPOS system is capable of providing QoS guarantees to applications with regard to the achieved positioning accuracy.

Research limitations/implications

During the experiments, the author recognized time synchronisation as an important challenge that should be addressed as part of future work.

Practical implications

The system enables resource‐restricted mobile devices and computerised objects to exploit computing resources found in their immediate physical vicinity (locality).

Originality/value

The paper presents a novel lightweight sensor‐fusion architecture for fault‐tolerant and adaptive self‐positioning that performs well on resource‐limited mobile devices. A special feature of the developed data‐fusion architecture is the application of a novel event modelling technique that enables the positioning system to give QoS guarantees under certain conditions.

Details

Sensor Review, vol. 27 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 June 2019

Shijia Wang

This paper aims to improve shearer positioning accuracy. Shearer positioning using an inertial navigation system (INS) is a highly useful technology; however, positioning accuracy

Abstract

Purpose

This paper aims to improve shearer positioning accuracy. Shearer positioning using an inertial navigation system (INS) is a highly useful technology; however, positioning accuracy is seriously hindered by INS attitude error, particularly heading drift.

Design/methodology/approach

A shearer positioning model with double-INS based on extended Kalman filter was proposed. The constant distance between two INSs (INS 1 and INS 2) was selected as the observation vector. Allan variance was used to identify the noise type of the vertical-axis gyroscope, and the stochastic process of heading drift for two INSs was obtained and divided into incongruous drift and concurrent drift.

Findings

Simulation was then carried out to determine the optimal arrangement of the two INSs. For incongruous drift, the optimal arrangement satisfied the condition that the line connecting INS 1 and INS 2 was perpendicular to the shearer lateral axis (in the shearer coordinate frame) and parallel to the east-north plane (in the east-north-up coordinate frame). Under optimal arrangement, the positioning accuracy increased against the distance between INS 1 and INS 2. For concurrent drift, the double-INS positioning model had no effect. Under the circumstances, the number of INSs should be increased so that the uncertainty of INS drift was reflected as much as possible.

Originality/value

A new double-INS positioning model was proposed with the constant distance between the two INSs. The optimal arrangement for double-INS was obtained.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 January 2020

Guoyang Wan, Fudong Li, Wenjun Zhu and Guofeng Wang

The positioning and grasping of large-size objects have always had problems of low positioning accuracy, slow grasping speed and high application cost compared with ordinary small…

Abstract

Purpose

The positioning and grasping of large-size objects have always had problems of low positioning accuracy, slow grasping speed and high application cost compared with ordinary small parts tasks. This paper aims to propose and implement a binocular vision-guided grasping system for large-size object with industrial robot.

Design/methodology/approach

To guide the industrial robot to grasp the object with high position and pose accuracy, this study measures the pose of the object by extracting and reconstructing three non-collinear feature points on it. To improve the precision and the robustness of the pose measuring, a coarse-to-fine positioning strategy is proposed. First, a coarse but stable feature is chosen to locate the object in the image and provide initial regions for the fine features. Second, three circular holes are chosen to be the fine features whose centers are extracted with a robust ellipse fitting strategy and thus determine the precise pose and position of the object.

Findings

Experimental results show that the proposed system has achieved high robustness and high positioning accuracy of −1 mm and pose accuracy of −0.5 degree.

Originality/value

It is a high accuracy method that can be used for industrial robot vision-guided and grasp location.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 November 2018

Kamil Krasuski, Janusz C´wiklak and Henryk Jafernik

The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise…

Abstract

Purpose

The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise Point Positioning (PPP) method in kinematic mode.

Design/methodology/approach

The aircraft coordinates of Cessna 172 plane in XYZ geocentric frame were obtained based on GLONASS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the RTKPOST module in RTKLIB program. The mathematical scheme of equation observation of PPP method was solved using Kalman filter in stochastic processing.

Findings

In paper, the average accuracy of aircraft position is about 0.308 m for X coordinate, 0.274 m for Y coordinate, 0.379 m for Z coordinate. In case of the mean radial spherical error (MRSE) parameter, the average value equals to 0.562 m. In paper, the accuracy of aircraft position in BLh geodesic frame were also showed and described.

Research limitations/implications

The PPP method can be applied for determination the coordinates of receiver, receiver clock bias, Zenith Wet Delay (ZWD) parameter and ambiguity term for each satellite.

Practical implications

The PPP method is a new technique for aircraft positioning in air navigation. The PPP method can be also used in receiver autonomous integrity monitoring (RAIM) module in aircraft-based augmentation system (ABAS) system in air transport. The typical accuracy for recovery the aircraft position is about cm ÷ dm level using the PPP method.

Social implications

The paper is destined for people who work in area of geodesy, navigation, aviation and air transport.

Originality/value

The work presents the original research results of implementation the GLONASS satellite technique for recovery the aircraft position in civil aviation. Currently, the presented research PPP method is used in precise positioning of aircraft in air navigation based on global positioning system and GLONASS solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 42000