Search results

1 – 10 of 105
Article
Publication date: 8 April 2014

Enrico Fodde, Kunio Watanabe and Yukiyasu Fujii

Salt weathering is one of the most common agents of decay of Central Asian earthen sites and is in function of water evaporation from the wall surface. Soon after excavation the…

Abstract

Purpose

Salt weathering is one of the most common agents of decay of Central Asian earthen sites and is in function of water evaporation from the wall surface. Soon after excavation the earthen walls and the stupa of the Buddhist temple of Ajina Tepa (seventh-eighth century AD) started to deteriorate due lack of protection and surface erosion. The most important issue in the planning of conservation work was to understand such mechanisms and to decrease the effect of salt weathering on structural damage. The purpose of this paper is to discuss these issues.

Design/methodology/approach

Evaporation distribution and salts types were studied on selected walls. In addition, three-dimensional recording of the walls and the stupa was undertaken with digital photogrammetric methods.

Findings

It was clearly found that the intensity of salt weathering in the site is high and some salts such as halite (sodium chloride) are thought to originate from groundwater. On the basis of the results obtained, thick shelter coating with mud brick and mud render was designed and constructed as protective measure for the earthen walls.

Practical implications

Those walls that were most affected by salts weathering and erosion at the base (coving) became structurally less sound and eventually collapsed if not conserved.

Originality/value

The work is the first attempt in the design of a methodology for the selection of earthen repair materials and methods.

Details

Structural Survey, vol. 32 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 2 April 2019

Nda Muhammad, Mohd Shalahuddin Adnan, Mohd Azlan Mohd Yosuff and Kabiru Abdullahi Ahmad

Sediment measurement is usually accessible on a periodic or distinct basis. The measurement of sediment (suspended and bedload), especially in the field, is vital in keeping…

Abstract

Purpose

Sediment measurement is usually accessible on a periodic or distinct basis. The measurement of sediment (suspended and bedload), especially in the field, is vital in keeping essential data of sediment transport and deposition. Various techniques for measuring sediment have been used over time each with its merits and demerits. The techniques discussed in this paper for suspended sediment include bottle, acoustic, pump, laser diffraction, nuclear and optical. Other techniques for bedload measurement are; River bedload trap (RBT), CSU/FU bedload trap, Helley–Smith, Polish Hydrological Services (PIHM) device, pit and trough, vortex tube, radioactive traces and bedload–surrogate technologies. However, the choice of technique depends on multiple factors ranging from budget constraint, availability of equipment, manpower and data requirement. The purpose of this paper is to present valuable information on selected techniques used in sediment measurement, to aid researchers/practitioners in the choice of sediment measurement technique.

Design/methodology/approach

This paper presents a general review of selected field techniques used in sediment measurement (suspended and bedload). Each techniques mode of operation, merits and demerits are discussed.

Findings

This paper highlights that each technique has its peculiar merits and demerits. However, two techniques are generally preferred over others; the bottle sampling and the Helley–Smith sampler for measuring suspended and bedload sediment. This is because the applicability of these techniques is quite widespread and time-tested.

Originality/value

This review paper provides an in-depth description and comparison of selected existing field sediment measurement techniques. The objective is to ease decision-making about the choice of technique, as well as to identify the suitability and applicability of the chosen technique.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 January 2021

Jae B. Kwak and Soonwan Chung

This paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are…

Abstract

Purpose

This paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.

Design/methodology/approach

DIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.

Findings

The authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.

Originality/value

3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.

Details

Microelectronics International, vol. 38 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1995

Water‐borne coatings Increasing use of water‐borne emulsion coatings for original equipment manufacturers (OEM) and product finishes is requiring greater efficiency in…

Abstract

Water‐borne coatings Increasing use of water‐borne emulsion coatings for original equipment manufacturers (OEM) and product finishes is requiring greater efficiency in coalescing‐aid solvents, an Eastman Chemical Co. representative said at a recent Chicago Society for Coatings Technology meeting. Eastman's Ronald K. Litton said emulsions designed for OEM and industrial applications have higher glass transition temperatures than emulsions used in architectural paints. That requires higher levels of coalescing aid to achieve good film formation. As a result, coalescing‐aid efficiency with a given emulsion system is a key factor, both from environmental (lower‐volatile organic compound (VOC)) and economic standpoints. Several properties should be examined when a coalescing aid is selected for water‐borne emulsion industrial coatings. The formulator should consider the evaporation rate and solubility parameter of the coalescing aid, along with its distribution pattern in a specific emulsion system. Those properties are important in defining the efficiency of a coalescing aid in terms of its ability to lower the minimum film‐forming temperature (MFFT) of an emulsion system. The coalescing aids also must be hydrolytically stable to provide minimum loss of efficiency due to ageing, Litton said. He showed several charts designed to assist formulators in the selection of optimum coalescing aids for emulsion systems. At the same conference, James T.K. Woo of The Glidden Co. discussed the grafting of high‐molecular‐weight epoxy resins with styrene‐methacrylic acid monomers, producing a water‐reducible copolymer. Grafting takes place at the aliphatic carbons of the epoxy resin, according to carbon‐13 NMR spectroscopy. The study was a follow‐up to a paper presented 14 years ago. Woo said recent research indicates that five grafting “peaks” were identified on a 400 megacycle carbon‐13 nuclear magnetic resonance spectroscopy instrument. The paper provided several theoretical calculation on grafting. Three of the graft peaks resulted from grafting at the secondary methylene carbons ‐CH2‐ and two resulted from grafting at the tertiary carbon ‐CH‐. The ratio of grafting at ‐CH2‐ to ‐CH‐appears to be 2.7:1 — lower than the 4:1 ratio of protons present on the aliphatic carbons that are susceptible to hydrogen abstraction leading to grafting. That indicates that the tertiary hydrogen is somwhat more susceptible to grafting than the methylene hydrogens, he said.

Details

Pigment & Resin Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 4 May 2020

Jayaraman Kathirvelan and Rajagopalan Vijayaraghavan

This work encompasses the various laboratory-based and portable methods evolved in recent times for sensitive and selective detection of ethylene for fruit-ripening application…

Abstract

Purpose

This work encompasses the various laboratory-based and portable methods evolved in recent times for sensitive and selective detection of ethylene for fruit-ripening application. The role of ethylene in natural and artificial fruit ripening and the associated health hazards are well known. So there is a growing need for ethylene detection. This paper aims to highlight potential methods developed for ethylene detection by various researchers, including ours. Intense efforts by various researchers have been on since 2014 for societal benefits.

Design/methodology/approach

The paper focuses on types of sensors, fabrication methods and signal conditioning circuits for ethylene detection in ppm levels for various applications. The authors have already designed, developed a laboratory-based set-up belonging to the electrochemical and optical methods for detection of ethylene.

Findings

The authors have developed a carbon nanotube (CNT)-based chemical sensor whose performance is higher than the reported sensor in terms of material, sensitivity and response, the sensor element being multi-walled carbon nanotube (MWCNT) in comparison to single-walled carbon nanotube (SWCNT). Also the authors have developed infrared (IR)-based physical sensor for the first time based on the strong IR absorption of ethylene at 10.6 µm. These methods have been compared with literature based on comparable parameters. The review highlights the potential possibilities for development of portable device for field applications.

Originality/value

The authors have reported new chemical and physical sensors for ethylene detection and quantification. It is demonstrated that it could be used for fruit-ripening applications A comparison of reported methods and potential opportunities is discussed.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2007

Kui Chen, Marco Leona and Tuan Vo‐Dinh

Identification and characterization of organic pigments and dyes used in works of art and cultural heritage material such as prints, drawings, manuscripts, paintings, and textiles…

2229

Abstract

Purpose

Identification and characterization of organic pigments and dyes used in works of art and cultural heritage material such as prints, drawings, manuscripts, paintings, and textiles can provide important information for dating, authentication, and conservation treatment of these objects and studying art history in general. Applications of surface‐enhanced Raman scattering (SERS) for this purpose have recently attracted increasing attention of both academic scientists and museum researchers. This paper aims to review the latest development involving the emerging applications of SERS for the analysis of organic pigments and dyes used in works of art and cultural heritage material.

Design/methodology/approach

First, the importance of organic pigments and dyes in the studies of works of art and cultural heritage material and the challenges in their identification and characterization are briefly summarized. This is followed by a discussion on sampling considerations in the context of art and archaeology. Then the fundamental principle of SERS, SERS instrumentation and different types of SERS substrates are reviewed. Finally, selected examples of SERS applications to the identification of organic pigments and dyes, including the analysis of a couple of samples of artistic and archaeological interest, are presented and discussed.

Findings

The last few years have witnessed the emergence of SERS as a non‐destructive or micro‐destructive technique for the characterization of organic pigments and dyes found in artistic and archaeological objects. Spectroscopic and microscopic measurements using SERS have provided some novel information and answers to a wide variety of questions. However, SERS application to the field of art and archaeology is still in the fledging stage of development and requires closer collaboration between academic scientists and museum researchers. But the range of possible applications is broad. Future trends point to a strong need for the development of portable instruments for field applications.

Originality/value

By compiling this review, the authors hope to direct more attention toward SERS and bring together the expertise in the scientific, museum and art community to further explore the possibilities of SERS in rapid and direct identification of pigments and dyes under field conditions.

Details

Sensor Review, vol. 27 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 February 2013

Caroline J. Smith, Christiano A. Machado‐Moreira, Gijs Plant, Simon Hodder, George Havenith and Nigel A.S. Taylor

The purpose of this paper is to provide footwear designers, manikin builders and thermo‐physiological modellers with sweat distribution information for the human foot.

1012

Abstract

Purpose

The purpose of this paper is to provide footwear designers, manikin builders and thermo‐physiological modellers with sweat distribution information for the human foot.

Design/methodology/approach

Independent research from two laboratories, using different techniques, is brought together to describe sweat production of the foot. In total, 32 individuals were studied. One laboratory used running at two intensities in males and females, and measured sweat with absorbents placed inside the shoe. The other used ventilated sweat capsules on a passive, nude foot, with sweating evaluated during passive heating and incremental exercise to fatigue.

Findings

Results from both laboratories are in agreement. Males secreted more than twice the volume of sweat produced by the females (p<0.01) at the same relative work rate. Both genders demonstrated a non‐uniform sweat distribution, though this was less variable in females. Highest local sweat rates were observed from the medial ankles (p<0.01). The dorsal foot sweated substantially more than the plantar (sole) areas (p<0.01). Sweating on the plantar side of the foot was uniform. Wearing shoes limited the increase in sweat production with increasing load, while the sweat rate of uncovered feet kept increasing with work and thermal load.

Practical implications

The observed variation in sweat rate across the foot shows that footwear design should follow the body mapping principle. Fabrics and materials with different properties can be used to improve comfort if applied to different foot surfaces. The data also demonstrate that foot models, whether physical (manikins) or mathematical, need to incorporate the observed variation across the foot to provide realistic simulation/testing of footwear.

Originality/value

Details

International Journal of Clothing Science and Technology, vol. 25 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2003

G. Ferblantier, B. Sorli, F. Pascal‐Delannoy and A. Boyer

In this paper, we propose a new way for the determination of aw in fresh and salt meat. The principle is founded on the analysis of a small air volume inside the product. First we…

Abstract

In this paper, we propose a new way for the determination of aw in fresh and salt meat. The principle is founded on the analysis of a small air volume inside the product. First we describe the fundamental definition of water activity, the state‐of‐the‐art of commercial aw meters, the effects of aw on microbiology in food. In the second step, after a description of the sensor, the principle and the procedure of measurement are explained. The measurements of aw are realized in meat at different stages of drying. Reproducibility and the temperature effect are particularly analyzed.

Details

Sensor Review, vol. 23 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 July 2019

Hamid Reza Goshayeshi and Mohammad Reza Safaei

Solar-driven water desalination technologies are rapidly developing with various links to other renewable sources. However, the efficiency of such systems severely depends on the…

Abstract

Purpose

Solar-driven water desalination technologies are rapidly developing with various links to other renewable sources. However, the efficiency of such systems severely depends on the design parameters. This paper presents results from an investigation on the effect of the glass cover inclination angle on the performance of two stepped solar still geometries (flat and convex) and the amount of produced distilled water.

Design Methodology Approach

Studied inclination angles of 25°, 27.5°, 30°, 32.5° and 35° were chosen, while other design parameters were fixed.

Findings

The investigation showed that the unit with the convex absorber plate had higher average water daily production rate, compared to the output of the flat absorber plate unit. The results also depicted that the inclination angle of the still has a noticeable effect on the performance of solar stills. The value of the critical angle is 32.5°, and the higher inclination angle results in less heat transfer coefficient. This value can be used for design purposes and erases the typical assumption to use lower angles to optimize the productivity of the still.

Practical Implications

Finally, obtained data were used to correlate the Nusselt number for the flat and convex surfaces with different inclination angles of the glass cover.

Originality Value

The outcome of this investigation may find applications to develop highly efficient solar stills to secure more drinkable water in warm, dry lands.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2010

George K. Stylios

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 105