Search results

1 – 10 of 67
Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 December 2022

Benna Hu, Laifu Wen and Xuemei Zhou

Vertical electrical sounding (VES) and Rayleigh wave exploration are widely used in the exploration of near-surface structure, but both have limitations. This study aims to make…

Abstract

Purpose

Vertical electrical sounding (VES) and Rayleigh wave exploration are widely used in the exploration of near-surface structure, but both have limitations. This study aims to make full use of the advantages of the two methods, reduce the multiple solutions of single inversion and improve the accuracy of the inversion. Thus, a nonlinear joint inversion method of VES and Rayleigh wave exploration based on improved differential evolution (DE) algorithm was proposed.

Design/methodology/approach

Based on the DE algorithm, a new initialization strategy was proposed. Then, taking AK-type with high-velocity interlayer model and HA-type with low-velocity interlayer model near the surface as examples, the inversion results of different methods were compared and analyzed. Then, the proposed method was applied to the field data in Chengde, Hebei Province, China. The stratum structure was accurately depicted and verified by drilling.

Findings

The synthetic data and field data results showed that the joint inversion of VES and Rayleigh wave data based on the improved DE algorithm can effectively improve the interpretation accuracy of the single-method inversion and had strong stability and large generalizable ability in near-surface engineering problems.

Originality/value

A joint inversion method of VES and Rayleigh wave data based on improved DE algorithm is proposed, which can improve the accuracy of single-method inversion.

Article
Publication date: 6 March 2023

Punsara Hettiarachchi, Subodha Dharmapriya and Asela Kumudu Kulatunga

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical…

Abstract

Purpose

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach. An increased cost in distribution is a major problem for many companies due to the absence of efficient planning methods to overcome operational challenges in distinct distribution networks. The problem addressed in this study is to minimize the transportation-related cost in distribution while using a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach which has not gained the adequate attention in the literature.

Design/methodology/approach

This study formulated the transportation problem as a vehicle routing problem with a heterogeneous fixed fleet and workload balancing, which is a combinatorial optimization problem of the NP-hard category. The model was solved using both the simulated annealing and a genetic algorithm (GA) adopting distinct local search operators. A greedy approach has been used in generating an initial solution for both algorithms. The paired t-test has been used in selecting the best algorithm. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet compositions of the heterogeneous fleet. Results were analyzed using analysis of variance (ANOVA) and Hsu’s MCB methods to identify the best scenario.

Findings

The solutions generated by both algorithms were subjected to the t-test, and the results revealed that the GA outperformed in solution quality in planning a heterogeneous fleet for distribution with load balancing. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet utilization with different compositions of the heterogeneous fleet. Results were analyzed using ANOVA and Hsu’s MCB method and found that removing the lowest capacities trucks enhances the average vehicle utilization with reduced travel distance.

Research limitations/implications

The developed model has considered both planning of heterogeneous fleet and the requirement of work load balancing which are very common industry needs, however, have not been addressed adequately either individually or collectively in the literature. The adopted solution methodologies to solve the NP-hard distribution problem consist of metaheuristics, statistical analysis and scenario analysis are another significant contribution. The planning of distribution operations not only addresses operational-level decision, through a scenario analysis, but also strategic-level decision has also been considered.

Originality/value

The planning of distribution operations not only addresses operational-level decisions, but also strategic-level decisions conducting a scenario analysis.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 13 October 2023

Wenxue Wang, Qingxia Li and Wenhong Wei

Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community…

Abstract

Purpose

Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community detection in dynamic networks is evolutionary clustering, which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals. However, the error accumulation issues limit the effectiveness of evolutionary clustering. While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework, the traditional multi-objective evolutionary approach lacks self-adaptability.

Design/methodology/approach

This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods. In this approach, a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting.

Findings

Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets.

Originality/value

To enhance the clustering results, adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D (A Multiobjective Optimization Evolutionary Algorithm based on Decomposition) to dynamically adjust the focus of different evolutionary stages.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 October 2023

Jie Chu, Junhong Li, Yizhe Jiang, Weicheng Song and Tiancheng Zong

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical…

Abstract

Purpose

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical, aerospace and other fields. This paper considers the parameter estimation of the Wiener-Hammerstein output error moving average (OEMA) system.

Design/methodology/approach

The idea of multi-population and parameter self-adaptive identification is introduced, and a multi-population self-adaptive differential evolution (MPSADE) algorithm is proposed. In order to confirm the feasibility of the above method, the differential evolution (DE), the self-adaptive differential evolution (SADE), the MPSADE and the gradient iterative (GI) algorithms are derived to identify the Wiener-Hammerstein OEMA system, respectively.

Findings

From the simulation results, the authors find that the estimation errors under the four algorithms stabilize after 120, 30, 20 and 300 iterations, respectively, and the estimation errors of the four algorithms converge to 5.0%, 3.6%, 2.7% and 7.3%, which show that all four algorithms can identify the Wiener-Hammerstein OEMA system.

Originality/value

Compared with DE, SADE and GI algorithm, the MPSADE algorithm not only has higher parameter estimation accuracy but also has a faster convergence speed. Finally, the input–output relationship of laser welding system is described and identified by the MPSADE algorithm. The simulation results show that the MPSADE algorithm can effectively identify parameters of the laser welding system.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 February 2023

Guanxiong Wang, Xiaojian Hu and Ting Wang

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order…

210

Abstract

Purpose

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.

Design/methodology/approach

This paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.

Findings

(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.

Originality/value

The originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 20 October 2023

Duo Zhang, Yonghua Li, Gaping Wang, Qing Xia and Hang Zhang

This study aims to propose a more precise method for robust design optimization of mechanical structures with black-box problems, while also considering the efficiency of…

Abstract

Purpose

This study aims to propose a more precise method for robust design optimization of mechanical structures with black-box problems, while also considering the efficiency of uncertainty analysis.

Design/methodology/approach

The method first introduces a dual adaptive chaotic flower pollination algorithm (DACFPA) to overcome the shortcomings of the original flower pollination algorithm (FPA), such as its susceptibility to poor accuracy and convergence efficiency when dealing with complex optimization problems. Furthermore, a DACFPA-Kriging model is developed by optimizing the relevant parameter of Kriging model via DACFPA. Finally, the dual Kriging model is constructed to improve the efficiency of uncertainty analysis, and a robust design optimization method based on DACFPA-Dual-Kriging is proposed.

Findings

The DACFPA outperforms the FPA, particle swarm optimization and gray wolf optimization algorithms in terms of solution accuracy, convergence speed and capacity to avoid local optimal solutions. Additionally, the DACFPA-Kriging model exhibits superior prediction accuracy and robustness contrasted with the original Kriging and FPA-Kriging. The proposed method for robust design optimization based on DACFPA-Dual-Kriging is applied to the motor hanger of the electric multiple units as an engineering case study, and the results confirm a significant reduction in the fluctuation of the maximum equivalent stress.

Originality/value

This study represents the initial attempt to enhance the prediction accuracy of the Kriging model using the improved FPA and to combine the dual Kriging model for uncertainty analysis, providing an idea for the robust optimization design of mechanical structure with black-box problem.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 January 2024

Lin Kang, Jie Wang, Junjie Chen and Di Yang

Since the performance of vehicular users and cellular users (CUE) in Vehicular networks is highly affected by the allocated resources to them. The purpose of this paper is to…

Abstract

Purpose

Since the performance of vehicular users and cellular users (CUE) in Vehicular networks is highly affected by the allocated resources to them. The purpose of this paper is to investigate the resource allocation for vehicular communications when multiple V2V links and a V2I link share spectrum with CUE in uplink communication under different Quality of Service (QoS).

Design/methodology/approach

An optimization model to maximize the V2I capacity is established based on slowly varying large-scale fading channel information. Multiple V2V links are clustered based on sparrow search algorithm (SSA) to reduce interference. Then, a weighted tripartite graph is constructed by jointly optimizing the power of CUE, V2I and V2V clusters. Finally, spectrum resources are allocated based on a weighted 3D matching algorithm.

Findings

The performance of the proposed algorithm is tested. Simulation results show that the proposed algorithm can maximize the channel capacity of V2I while ensuring the reliability of V2V and the quality of service of CUE.

Originality/value

There is a lack of research on resource allocation algorithms of CUE, V2I and multiple V2V in different QoS. To solve the problem, one new resource allocation algorithm is proposed in this paper. Firstly, multiple V2V links are clustered using SSA to reduce interference. Secondly, the power allocation of CUE, V2I and V2V is jointly optimized. Finally, the weighted 3D matching algorithm is used to allocate spectrum resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 November 2023

Iman Rastgar, Javad Rezaeian, Iraj Mahdavi and Parviz Fattahi

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize…

Abstract

Purpose

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize production and scheduling decisions.

Design/methodology/approach

This study presents a multi-objective optimization framework to make production planning, scheduling and maintenance decisions. An epsilon-constraint method is used to solve small instances of the model, while new hybrid optimization algorithms, including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm, multi-objective harmony search and improved multi-objective harmony search (IMOHS) are developed to address the high complexity of large-scale problems.

Findings

The computational results demonstrate that the metaheuristic algorithms are effective in obtaining economic solutions within a reasonable computational time. In particular, the results show that the IMOHS algorithm is able to provide optimal Pareto solutions for the proposed model compared to the other three algorithms.

Originality/value

This study presents a new mathematical model that simultaneously determines green production planning and scheduling decisions by minimizing the sum of the total cost, makespan, lateness and energy consumption criteria. Integrating production and scheduling of a shop floor is critical for achieving optimal operational performance in production planning. To the best of the authors' knowledge, the integration of production planning and maintenance has not been adequately addressed.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 28 March 2023

Yixuan Li, Yanfeng Chen, Bo Zhang, Dongyuan Qiu, Fan Xie and Chao Cheng

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Abstract

Purpose

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Design/methodology/approach

In this paper, based on the fractional calculus theory and the traditional integer-order model, a reactance model suitable for high frequency is constructed, and the mutation cross differential evolution algorithm is used to identify the parameters in the model.

Findings

By comparing the integer-order model, high-frequency fractional-order model and the actual impedance characteristic curve of inductance and capacitance, it is verified that the proposed model can more accurately reflect the high-frequency characteristics of inductance and capacitance. The simulation and experimental results show that the oscillator constructed based on the proposed model can analyze the frequency and output waveform of the oscillator more accurately.

Originality/value

The model proposed in this paper has a simple structure and contains only two parameters to be identified. At the same time, the model has high precision. The fitting errors of impedance curve and phase-frequency characteristic curve are less than 5%. Therefore, the proposed model is helpful to improve the simplicity and accuracy of circuit system analysis and design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 67