Search results

1 – 10 of 70
Article
Publication date: 6 September 2022

Nader L. Labib, Fouad Zahran, Mohamed Adel Youssef, Azza M. Mazrouaa and Manal Gamal Mohamed

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Abstract

Purpose

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Design/methodology/approach

An acrylic polyol from a mixture of different monomers of hydroxypropyl methacrylate, methacrylic acid, 2-ethylhexyl acrylate, methyl methacrylate and n-butyl methacrylate was prepared with different ratios of 2,4-pentanedione as a pot life extender. The reaction takes place in presence of di-tert-butyl peroxide as initiator with samples (T1–T7). The physical properties of prepared acrylic polyol were characterized. Then, coating polyurethane varnish was prepared from the prepared acrylic polyol with an aliphatic polyisocyanate in a 1:1 equivalent ratio of OH:NCO at room temperature, in presence of paint thinner (diluents/solvent) and dibutyltin dilaurate as a catalyst to give samples (T1C–T7C). This coating was evaluated via Fourier-transform infrared spectroscopy, drying time, hardness and gloss, distinctness of image and reflected image quality.

Findings

The coating has a prolonged pot life while still maintaining the other qualities, thanks to the greater 2,4-pentanedione content.

Originality/value

It is desired to have a paint which has a satisfactory pot life, short curing time and reduces many drawbacks such as inefficient working and deterioration of the paint before application.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 January 2024

Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…

Abstract

Purpose

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.

Design/methodology/approach

A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.

Findings

A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.

Originality/value

The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 70