Search results

1 – 2 of 2
Article
Publication date: 24 July 2023

Mehdi Ranjbar-Roeintan

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Abstract

Purpose

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Design/methodology/approach

Based on the nonlinear Hertz impact mechanism, the energies related to the impactor and the beam are written, and motion equations are derived using the Lagrangian mechanics and Ritz method. The strain rate term is represented as a damping matrix in the equations of motion. In the issue of LVI on the silicon nitride and stainless steel beam, the effect of internal viscous damping coefficient in simply–simply and clamped–free boundary conditions are studied. Also, the influence of the volume fraction index in the range between zero and one and greater than one on the impact response is investigated.

Findings

The results make it clear that the strain rate parameter had little effect on the response in LVI. Also, an increase in the volume fraction index has led to a decrease in the contact force and an increase in the rebound velocity of the impactor.

Originality/value

The effect of strain rate on LVI is theoretically studied in this paper, while in most of the papers, this effect is investigated experimentally and numerically.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 October 2023

Monapriya Naidu Kerinasamy Naidu, Iling Aema Wonnie Ma, Sachin Sharma Ashok Kumar, Vengadaesvaran Balakrishnan, Ramesh Subramaniam and Ramesh Kasi

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Abstract

Purpose

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Design/methodology/approach

In this work, a novel attempt is made to develop binder coatings using epoxidized natural rubber-based material and an organic resin (acrylic resin) for corrosion protection on metal substrate. Seven different samples of multifunctional coatings are developed by varying the compositions of epoxidized natural rubber (ENR) and acrylic resin. The properties of the developed coatings have been characterized using analytical methods such as Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). EIS has been carried out for 30 days to evaluate the corrosion resistance after immersing into 3.5 wt.% of sodium chloride. Cross hatch cut tester (CHT) has been used to study the adhesive properties. UV–Visible Spectroscopy (UV–Vis) was also used to assess changes in the coating-film transparency of the natural rubber-based coating systems in this study.

Findings

The developed coatings have formed uniform layer on the substrate. CHT results show excellent adhesion of the coatings. Higher concentrations of ENR have higher transparency level, which reduces when the acrylic concentration increases. FTIR analysis confirms the crosslinking that occurred between the components of the coatings. Based on the impedance data from EIS, the incorporation of natural rubber can be an additive for the corrosion protection, which has the coating resistance values well above 108Ω even after 30 days of immersion.

Practical implications

The blending method provides a simple and practical solution to improve the strength and adhesion properties of acrylic polyol resin with epoxidized natural rubber. There is still improvement needed for long-term applications.

Originality/value

The work has been conducted in our laboratory. The combination of natural rubber-based materials and organic resins is a new approach in coating research.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2