Search results

1 – 10 of 561
Article
Publication date: 21 October 2020

Xiwang Xiang, Xin Ma, Minda Ma, Wenqing Wu and Lang Yu

PM10 is one of the most dangerous air pollutants which is harmful to the ecological system and human health. Accurate forecasting of PM10 concentration makes it easier for the…

Abstract

Purpose

PM10 is one of the most dangerous air pollutants which is harmful to the ecological system and human health. Accurate forecasting of PM10 concentration makes it easier for the government to make efficient decisions and policies. However, the PM10 concentration, particularly, the emerging short-term concentration has high uncertainties as it is often impacted by many factors and also time varying. Above all, a new methodology which can overcome such difficulties is needed.

Design/methodology/approach

The grey system theory is used to build the short-term PM10 forecasting model. The Euler polynomial is used as a driving term of the proposed grey model, and then the convolutional solution is applied to make the new model computationally feasible. The grey wolf optimizer is used to select the optimal nonlinear parameters of the proposed model.

Findings

The introduction of the Euler polynomial makes the new model more flexible and more general as it can yield several other conventional grey models under certain conditions. The new model presents significantly higher performance, is more accurate and also more stable, than the six existing grey models in three real-world cases and the case of short-term PM10 forecasting in Tianjin China.

Practical implications

With high performance in the real-world case in Tianjin China, the proposed model appears to have high potential to accurately forecast the PM10 concentration in big cities of China. Therefore, it can be considered as a decision-making support tool in the near future.

Originality/value

This is the first work introducing the Euler polynomial to the grey system models, and a more general formulation of existing grey models is also obtained. The modelling pattern used in this paper can be used as an example for building other similar nonlinear grey models. The practical example of short-term PM10 forecasting in Tianjin China is also presented for the first time.

Details

Grey Systems: Theory and Application, vol. 11 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 14 May 2020

Dang Luo, Muffarah Ambreen, Assad Latif and Xiaolei Wang

Electricity plays an important role in the economic condition of any country. Nowadays, Pakistan is badly affected by shortage of electricity, which directly affected the economic…

Abstract

Purpose

Electricity plays an important role in the economic condition of any country. Nowadays, Pakistan is badly affected by shortage of electricity, which directly affected the economic growth of state. The purpose of this study is to propose an improved grey model DGPM(1,1,N) to forecast Pakistan's production of electricity, installed capacity and consumption.

Design/methodology/approach

To significantly simulate and predict accuracy, the discrete grey polynomial model DGPM(1,1,N) is improved with new information priority accumulation. The particle swarm optimization (PSO) algorithm is used for parameter optimization. The value of parameter is adjusted into improved grey model. By adjusting the parameter value in the model, the accuracy of prediction is enhanced.

Findings

The installed capacity of electricity needs more attention to improvement through implementation of effective polices, resolving major issues and funding scheme to fulfill the electricity demand of country. And improved DGPM(1,1,N) has better accuracy than original DGPM(1,1,N), DGM(1,1), nongrey models, linear regression and Holt–Winters methods.

Practical implications

This paper provides a practical and efficient improved grey method to predict the electricity production, consumption and installed capacity in Pakistan. This research and suggestion will help Pakistani government to formulate better policies to decrease the consumption of electricity and increase the installed capacity of electricity.

Originality/value

This paper not only improves the grey model with accumulation generation operator but also forecasts Pakistan's electricity production, installed capacity and consumption. It is a new idea to predict the installed capacity of electricity and the findings provide suggestions for the government to make policies.

Details

Grey Systems: Theory and Application, vol. 10 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 27 March 2024

Xiaomei Liu, Bin Ma, Meina Gao and Lin Chen

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey

16

Abstract

Purpose

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey models can't catch the time-varying trend well.

Design/methodology/approach

The proposed model couples Fourier series and linear time-varying terms as the grey action, to describe the characteristics of variable amplitude and seasonality. The truncated Fourier order N is preselected from the alternative order set by Nyquist-Shannon sampling theorem and the principle of simplicity, then the optimal Fourier order is determined by hold-out method to improve the robustness of the proposed model. Initial value correction and the multiple transformation are also studied to improve the precision.

Findings

The new model has a broader applicability range as a result of the new grey action, attaining higher fitting and forecasting accuracy. The numerical experiment of a generated monthly time series indicates the proposed model can accurately fit the variable amplitude seasonal sequence, in which the mean absolute percentage error (MAPE) is only 0.01%, and the complex simulations based on Monte-Carlo method testify the validity of the proposed model. The results of monthly electricity consumption in China's primary industry, demonstrate the proposed model catches the time-varying trend and has good performances, where MAPEF and MAPET are below 5%. Moreover, the proposed TVGFM(1,1,N) model is superior to the benchmark models, grey polynomial model (GMP(1,1,N)), grey Fourier model (GFM(1,1,N)), seasonal grey model (SGM(1,1)), seasonal ARIMA model seasonal autoregressive integrated moving average model (SARIMA) and support vector regression (SVR).

Originality/value

The parameter estimates and forecasting of the new proposed TVGFM are studied, and the good fitting and forecasting accuracy of time-varying amplitude seasonal fluctuation series are testified by numerical simulations and a case study.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 3 August 2021

Yitong Liu, Yang Yang, Dingyu Xue and Feng Pan

Electricity consumption prediction has been an important topic for its significant impact on electric policies. Due to various uncertain factors, the growth trends of electricity…

Abstract

Purpose

Electricity consumption prediction has been an important topic for its significant impact on electric policies. Due to various uncertain factors, the growth trends of electricity consumption in different cases are variable. However, the traditional grey model is based on a fixed structure which sometimes cannot match the trend of raw data. Consequently, the predictive accuracy is variable as cases change. To improve the model's adaptability and forecasting ability, a novel fractional discrete grey model with variable structure is proposed in this paper.

Design/methodology/approach

The novel model can be regarded as a homogenous or non-homogenous exponent predicting model by changing the structure. And it selects the appropriate structure depending on the characteristics of raw data. The introduction of fractional accumulation enhances the predicting ability of the novel model. And the relative fractional order r is calculated by the numerical iterative algorithm which is simple but effective.

Findings

Two cases of power load and electricity consumption in Jiangsu and Fujian are applied to assess the predicting accuracy of the novel grey model. Four widely-used grey models, three classical statistical models and the multi-layer artificial neural network model are taken into comparison. The results demonstrate that the novel grey model performs well in all cases, and is superior to the comparative eight models.

Originality/value

A fractional-order discrete grey model with an adaptable structure is proposed to solve the conflict between traditional grey models' fixed structures and variable development trends of raw data. In applications, the novel model has satisfied adaptability and predicting accuracy.

Details

Kybernetes, vol. 51 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 January 2023

Cuiwei Mao, Xiaoyi Gou and Bo Zeng

This paper aims to overcome the problem that the single structure of the driving term of the grey prediction model is not adapted to the complexity and diversity of the actual…

152

Abstract

Purpose

This paper aims to overcome the problem that the single structure of the driving term of the grey prediction model is not adapted to the complexity and diversity of the actual modeling objects, which leads to poor modeling results.

Design/methodology/approach

Firstly, the nonlinear law between the raw data and time point is fully mined by expanding the nonlinear term and the range of order. Secondly, through the synchronous optimization of model structure and parameter, the dynamic adjustment of the model with the change of the modeled object is realized. Finally, the objective optimization of nonlinear driving term and cumulative order of the model is realized by particle swarm optimization PSO algorithm.

Findings

The model can achieve strong compatibility with multiple existing models through parameter transformation. The synchronous optimization of model structure and parameter has a significant improvement over the single optimization method. The new model has a wide range of applications and strong modeling capabilities.

Originality/value

A novel grey prediction model with structure variability and optimizing parameter synchronization is proposed.

Highlights

The highlights of the paper are as follows:

  1. A new grey prediction model with a unified nonlinear structure is proposed.

  2. The new model can be fully compatible with multiple traditional grey models.

  3. The new model solves the defect of poor adaptability of the traditional grey models.

  4. The parameters of the new model are optimized by PSO algorithm.

  5. Cases verify that the new model outperforms other models significantly.

A new grey prediction model with a unified nonlinear structure is proposed.

The new model can be fully compatible with multiple traditional grey models.

The new model solves the defect of poor adaptability of the traditional grey models.

The parameters of the new model are optimized by PSO algorithm.

Cases verify that the new model outperforms other models significantly.

Article
Publication date: 21 July 2020

Liang Zeng

To develop the theory and application of the grey prediction model, this investigation constructs a novel discrete grey Riccati model termed DGRM(1,1).

Abstract

Purpose

To develop the theory and application of the grey prediction model, this investigation constructs a novel discrete grey Riccati model termed DGRM(1,1).

Design/methodology/approach

By examining a special kind of Riccati difference equation and the structure of the conventional discrete grey model (DGM), we advance a novel DGRM, and the model's prediction effect is evaluated by two numerical examples and an application case and compared with that of other conventional grey models.

Findings

The average relative simulation error of DGRM(1,1) does not change if the model is built after the original sequence has been transformed by a multiplier, and the new model is suitable to predict monotonically increasing, monotonically decreasing and unimodal sequences.

Practical implications

DGRM(1,1) is utilized to forecast the development cost of a small plane owned by the Aviation Industry Corporation of China (AVIC) with an original data sequence from 2006 to 2013. The outcomes indicate that DGRM(1,1) exhibits high precision and potential in development cost prediction.

Originality/value

Combining the Riccati difference equation with the conventional DGM, the author advances a new grey model that is suitable to predict three kinds of data series with different changing trends.

Details

Grey Systems: Theory and Application, vol. 11 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 6 January 2022

Wuyong Qian, Hao Zhang, Aodi Sui and Yuhong Wang

The purpose of this study is to make a prediction of China's energy consumption structure from the perspective of compositional data and construct a novel grey model for…

Abstract

Purpose

The purpose of this study is to make a prediction of China's energy consumption structure from the perspective of compositional data and construct a novel grey model for forecasting compositional data.

Design/methodology/approach

Due to the existing grey prediction model based on compositional data cannot effectively excavate the evolution law of correlation dimension sequence of compositional data. Thus, the adaptive discrete grey prediction model with innovation term based on compositional data is proposed to forecast the integral structure of China's energy consumption. The prediction results from the new model are then compared with three existing approaches and the comparison results indicate that the proposed model generally outperforms existing methods. A further prediction of China's energy consumption structure is conducted into a future horizon from 2021 to 2035 by using the model.

Findings

China's energy structure will change significantly in the medium and long term and China's energy consumption structure can reach the long-term goal. Besides, the proposed model can better mine and predict the development trend of single time series after the transformation of compositional data.

Originality/value

The paper considers the dynamic change of grey action quantity, the characteristics of compositional data and the impact of new information about the system itself on the current system development trend and proposes a novel adaptive discrete grey prediction model with innovation term based on compositional data, which fills the gap in previous studies.

Details

Grey Systems: Theory and Application, vol. 12 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 20 September 2021

Dang Luo and Decai Sun

With the prosperity of grey extension models, the form and structure of grey forecasting models tend to be complicated. How to select the appropriate model structure according to…

Abstract

Purpose

With the prosperity of grey extension models, the form and structure of grey forecasting models tend to be complicated. How to select the appropriate model structure according to the data characteristics has become an important topic. The purpose of this paper is to design a structure selection method for the grey multivariate model.

Design/methodology/approach

The linear correction term is introduced into the grey model, then the nonhomogeneous grey multivariable model with convolution integral [NGMC(1,N)] is proposed. Then, by incorporating the least absolute shrinkage and selection operator (LASSO), the model parameters are compressed and estimated based on the least angle regression (LARS) algorithm.

Findings

By adjusting the values of the parameters, the NGMC(1,N) model can derive various structures of grey models, which shows the structural adaptability of the NGMC(1,N) model. Based on the geometric interpretation of the LASSO method, the structure selection of the grey model can be transformed into sparse parameter estimation, and the structure selection can be realized by LASSO estimation.

Practical implications

This paper not only provides an effective method to identify the key factors of the agricultural drought vulnerability, but also presents a practical model to predict the agricultural drought vulnerability.

Originality/value

Based on the LASSO method, a structure selection algorithm for the NGMC(1,N) model is designed, and the structure selection method is applied to the vulnerability prediction of agricultural drought in Puyang City, Henan Province.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 3 December 2018

Qiuping Wang, Subing Liu and Haixia Yan

Due to high efficiency and low carbon of natural gas, the consumption of natural gas is increasing rapidly, and the prediction of natural gas consumption has become the focus. The…

Abstract

Purpose

Due to high efficiency and low carbon of natural gas, the consumption of natural gas is increasing rapidly, and the prediction of natural gas consumption has become the focus. The purpose of this paper is to employ a prediction technique by combining grey prediction model and trigonometric residual modification for predicting average per capita natural gas consumption of households in China.

Design/methodology/approach

The GM(1,1) model is utilised to obtain the tendency term, then the generalised trigonometric model is used to catch the periodic phenomenon from the residual data of GM(1,1) model for improving predicting accuracy.

Findings

The case verified the view of Xie and Liu: “When the value of a is less, DGM model and GM(1,1) model can substitute each other.” The combination of the GM(1,1) and the trigonometric residual modification technique can observably improve the predicting accuracy of average per capita natural gas consumption of households in China. The mean absolute percentage errors of GM(1,1) model, DGM(1,1), unbiased grey forecasting model, and TGM model in ex post testing stage (from 2013 to 2015) are 32.5510, 33.5985, 36.9980, and 5.2996 per cent, respectively. The TGM model is suitable for the prediction of average per capita natural gas consumption of households in China.

Practical implications

According to the historical data of average per capita natural gas consumption of households in China, the authors construct GM(1,1) model, DGM(1,1) model, unbiased grey forecasting model, and GM(1,1) model with trigonometric residual modification. The accuracy of TGM is the best. TGM helps to improve the accuracy of GM(1,1).

Originality/value

This paper gives a successful practical application of grey model GM(1,1) with the trigonometric residual modification, where the cyclic variations exist in the residual series. The case demonstrates the effectiveness of trigonometric grey prediction model, which is helpful to understand the modeling mechanism of trigonometric grey prediction model.

Details

Grey Systems: Theory and Application, vol. 9 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 May 2019

Wenqing Wu, Xin Ma, Yuanyuan Zhang, Yong Wang and Xinxing Wu

The purpose of this paper is to study a fractional grey model FAGM(1,1,tα) based on the GM(1,1,tα) model and the fractional accumulated generating operation, and then predict the…

Abstract

Purpose

The purpose of this paper is to study a fractional grey model FAGM(1,1,tα) based on the GM(1,1,tα) model and the fractional accumulated generating operation, and then predict the national health expenditure, the government health expenditure and the out-of-pocket health expenditure of China.

Design/methodology/approach

The presented univariate grey model is systematically studied by using the grey modelling technique, the fractional accumulated generating operation and the trapezoid approximation formula of definite integral. The optimal system parameters r and α are evaluated by the particle swarm optimisation algorithm.

Findings

The expressions of the time response function and the restored values of this model are derived. The GM(1,1), NGM(1,1,k,c) and GM(1,1,tα) models are particular cases of the FAGM(1,1,tα) model with deterministic r and α. Compared with other forecasting models, the results of the FAGM(1,1,tα) model have higher precision.

Practical implications

The superiority of the new model has high potential to be used in the medicine and health fields and others. Results can provide a guideline for government decision making.

Originality/value

The univariate fractional grey model FAGM (1,1,tα) successfully studies the China’s health expenditure.

Details

Grey Systems: Theory and Application, vol. 9 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of 561