Search results

1 – 10 of over 2000
Article
Publication date: 17 May 2013

Abdullah M. Asiri, Khalid A. Alamry and Mahmoud A. Hussein

The purpose of this paper is to investigate the effect of annealing on photochromic performance of (E)‐dicyclopropylmethylene‐(2, 5‐dimethyl‐3‐furylethylid‐ene)‐succinicanhydride…

Abstract

Purpose

The purpose of this paper is to investigate the effect of annealing on photochromic performance of (E)‐dicyclopropylmethylene‐(2, 5‐dimethyl‐3‐furylethylid‐ene)‐succinicanhydride doped in polyacrylic acid thin film.

Design/methodology/approach

(E)‐dicyclopropylmethylene‐(2,5‐dimethyl‐3‐furyl‐ethylidene)‐succinic‐anhydride (DMDFS‐E) fulgide doped in polyacrylic acid thin films was prepared. DMDFS‐E fulgide doped in polyacrylic acid thin films was heated at various annealing temperatures. Photocoloration, photobleaching and photochemical fatigue resistance for the desired DMDFS‐E fulgide doped in polyacrylic acid thin films were studied.

Findings

Upon irradiation with UV light (366 nm), fulgide DMDFS‐E undergoes a conrotatory ring closure to the pinkish colored closed form C (523 nm). The later color was switched back to the original color when the films were irradiated with white light. The kinetics of photocoloration and photobleaching processes were followed spectrophotometrically by monitoring the absorbance of the ring closed product DMDFS‐C at its λmax of 523 nm. The first‐order plots of photocoloration reaction showed distinct linear line at different temperatures. The slope of these first‐order lines corresponding to the rate constants k. It was found that for photocoloration reaction, the rate constant of the photocoloration reaction was slower than the photobleaching reaction and both reactions decrease with increasing the annealing temperatures. It was found that there was almost improvement of photochemical fatigue resistance of fulgide DMDFS‐E doped in polyacrylic acid thin film at several of the annealing temperatures.

Originality/value

The results obtained in this work showed that the photochromic properties of DMDFS fulgide E were improved upon annealing the film at 100°C. Therefore, it would be recommended for improvement to apply fulgides as annealed polymer films.

Details

Pigment & Resin Technology, vol. 42 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 December 2021

Ewa Klimiec, Piotr Zachariasz, Halina Kaczmarek, Bogusław Królikowski and Sławomir Mackiewicz

This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites (thin

Abstract

Purpose

This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites (thin films enriched with 5 and 10 wt% of mineral fillers as Sillikolloid P 87 and glass beads) should exhibit suitable structural elasticity within specific stress ranges. After the deformation force is removed, the sensor material must completely restore its original shape and size.

Design/methodology/approach

Estimating the stiffness tensor element (C33) for polymer films (nonpolar space-charge electrets) by broadband resonance ultrasound spectroscopy is a relatively simple method of determining the safe stress range generated in thin pressure sensors. Therefore, ultrasonic and piezoelectric studies were carried out on four composite it-PP films. First, the longitudinal velocity (vL) of ultrasonic waves passing through the it-PP film in the z-direction (thickness) was evaluated from the ω-position of mechanical resonance of the so-called insertion loss function. In turn, the d33 coefficient was calculated from accumulated piezoelectric charge density response to mechanical stress.

Findings

Research is at an early stage; however, it can be seen that the mechanical orientation of the it-PP film improves its piezoelectric properties. Moreover, the three-year electric charge stability of the it-PP film seems promising.

Originality/value

Ultrasonic spectroscopy can be successfully handled as a validation method in the small-lot production of polymer films with the air-cavities structure intended for pressure sensors. The structural repeatability of polymer films is strongly related to a homogeneous distribution of the electric charge on the electret surface.

Article
Publication date: 20 November 2009

Rabindra N. Das, Steven G. Rosser, Konstantinos I. Papathomas, Tim Antesberger and Voya R. Markovich

Embedded passives account for a very large part of today's electronic assemblies. This is particularly true for products such as cellular phones, camcorders, computers, and…

Abstract

Purpose

Embedded passives account for a very large part of today's electronic assemblies. This is particularly true for products such as cellular phones, camcorders, computers, and several critical defence devices. Market pressures for new products with more features, smaller size and lower cost demand smaller, compacter, simpler substrates. An obvious strategy is to reduce the number of surface mounted passives by embedding them in the substrate. In addition, current interconnect technology to accommodate surface mounted passives imposes certain limits on board design which constrain the overall system speed. Embedding passives is one way to minimize the functional footprint while at the same time improving performance. The purpose of this paper is to describe the development of a thin film technology based on ferroelectric‐epoxy polymer‐based flake‐free resin coated copper capacitive (RC3) nanocomposites to manufacture multilayer embedded capacitors.

Design/methodology/approach

This paper discusses thin film technology based on RC3 nanocomposites. In particular, recent developments in high capacitance, large area, thin film passives, and their integration in system in a package (SiP) are highlighted.

Findings

A variety of RC3 nanocomposite thin films ranging from 8 to 50 microns thick were processed on copper substrates by liquid coating. Multilayer embedded capacitors resulted in high capacitances of 16‐28 nF. The fabricated test vehicle also included two embedded resistor layers with resistances in the range of 15 Ω to 100 kΩ. To enable high performance devices, an embedded resistor must meet certain tolerances. The embedded resistors can be laser trimmed to a tolerance of <5 percent, which is usually acceptable for most applications. An extended embedded passives solution has been demonstrated, both through its high wireability designs and package performance, to be perfectly suited for SiP applications.

Research limitations/implications

This case study designed and fabricated an eight layer high density internal passive core and subsequently applied fine geometry three buildup layers to form a 3‐8‐3 structure. The passive core technology is capable of providing up to six layers of embedded capacitance and could be extended further.

Originality/value

A thin film technology based on ferroelectric‐epoxy polymer‐based flake‐free RC3 nanocomposites was developed to manufacture multilayer embedded capacitors. The overall approach lends itself to package miniaturization because capacitance can be increased through multiple layers and reduced thickness to give the desired values in a smaller area.

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 January 2019

Murtuza Mehdi, Alidad Chandio, Maaz Akhtar, Zaibullah Khan, Ahsan Zaman and Adeel Muhammad

Polymer substrates with micron size roughness features have been found to play an important role in the mechanical performance of thin functional films which are used extensively…

Abstract

Purpose

Polymer substrates with micron size roughness features have been found to play an important role in the mechanical performance of thin functional films which are used extensively in stretchable and flexible micro electromechanical systems. The purpose of this study is to report the stretchability and flexibility limits of micro size silver nano platelet films on a soft polymer substrate having two different orientations of micro grating with respect to the applied load.

Design/methodology/approach

Parallel and perpendicular micro gratings on the surface of a soft polymer substrate polydimethylsiloxane were patterned using a carefully machined master aluminum block and thin aluminum foils. Silver nano platelet-based films were rod coated on the substrate surface containing the micro gratings. These films were dried in ambient air and were tested for their stretchability and flexibility limits using homemade tools. Finite element modeling has also been performed and was found to support the experimental observations.

Findings

Experiments indicate that stretchability of silver nano platelet-based thin films tends to increase when the grating orientation remains parallel to the axis of the applied load, while its flexibility improves when the orientation becomes perpendicular to the loading axis.

Originality/value

The effect of grating orientation with respect to the applied load was investigated. The experiments show that micro grating roughness features are capable of enhancing the mechanical performance of nano platelet-based silver films on a soft polymer substrate and can be used in various stretchable and flexible micro electro mechanical device applications.

Details

Microelectronics International, vol. 36 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1986

R.K. Sadhir and H.E. Saunders

The paper describes the plasma polymerisation process for depositing ultrathin films. Such films, deposited from monomers containing hydrophobic elements such as hexafluorobenzene…

Abstract

The paper describes the plasma polymerisation process for depositing ultrathin films. Such films, deposited from monomers containing hydrophobic elements such as hexafluorobenzene and hexamethyldisiloxane, showed excellent water vapour barrier properties, due to dense, highly crosslinked and rigid structures of the films. The composition and structure of the plasma polymerised films have been elucidated by ESCA and infra‐red spectroscopy.

Details

Microelectronics International, vol. 3 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 2 January 2018

Xue Lian Wu, Chuan Peng Yang, Yu Qin Guo and Hong Yu Wang

This paper aims to focus on achieving triple-shape memory effect (triple-SME) of a commercial poly (ethylene terephthalate) (PET) film with the thickness of 100 µm.

Abstract

Purpose

This paper aims to focus on achieving triple-shape memory effect (triple-SME) of a commercial poly (ethylene terephthalate) (PET) film with the thickness of 100 µm.

Design/methodology/approach

The thermal characteristics and microstructure of PET film were characterized by differential scanning calorimetry, thermogravimetric analysis and wide-angle X-ray diffraction analysis. The dual-shape memory effect (dual-SME) of the PET film was then systematically investigated, and based on that, triple-SME in thin PET film was achieved.

Findings

Investigation of the dual-SME in PET film revealed the difference between recovery temperature and programming temperature reduced with increasing programming temperature. An obvious intermediate shape shifting between the original and final programmed shape was observed during shape recovery in triple-shape memory behaviors.

Research limitations/implications

Compared with dual-SME in polymer, relatively less work has been done on multi-SME in polymer, especially in thin polymer film. In this study, triple-SME in a PET film was investigated based on the results of dual-SME of the film. The main implication of the study is on how to achieve a watermark between the final programmed pattern and the original pattern, for the application of shape memory polymer in anti-counterfeiting label.

Originality/value

Dual- and triple-SMEs were achieved in a PET film that is only 100 µm in thickness, and the underlying mechanism for the difference between programming temperature and recovery temperature was discussed. For the novel application of triple-SME in anti-counterfeit label, the watermark during shape recovery in triple-SME can effectively prevent duplication.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2004

Richard Ulrich

All capacitor dielectric materials, whether used for discrete or embedded applications, can be grouped into two general categories: paraelectric and ferroelectric. Ferroelectrics…

Abstract

All capacitor dielectric materials, whether used for discrete or embedded applications, can be grouped into two general categories: paraelectric and ferroelectric. Ferroelectrics generally exhibit much higher dielectric constants, but are also less stable with regard to temperature, frequency, voltage, time and film thickness. There are dozens of each of these materials that have been used in discrete capacitors and about ten that are either available for use in embedded capacitors or will soon be marketed for that purpose. The commercialized materials can be broken down into four sub‐categories: thick‐film polymers, ferroelectric powder in polymer binders, thinfilm paraelectrics, and thick‐film ferroelectrics. These four classifications are evaluated with regard to their electrical performance, ease of fabrication, and suitability for specific applications.

Details

Circuit World, vol. 30 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1995

R. Fillion, R. Wojnarowski, T. Gorcyzca, E. Wildi and H. Cole

An innovative embedded chip MCM technology is being developed to address the packaging needs of the high volume, non‐military electronics industries. This development has evolved…

Abstract

An innovative embedded chip MCM technology is being developed to address the packaging needs of the high volume, non‐military electronics industries. This development has evolved out of the GE High Density Interconnect (HDI) embedded chip MCM technology that was aimed at very high performance electronics in harsh military environments. In the HDI process, multiple bare chips are placed into cavities formed in a ceramic substrate and interconnected using an overlay polymer film, thin film metallisation and laser formed vias. Multiple levels of fine line (20 to 40 microns) interconnections and reference planes are used to form the circuit. In this new process, a plastic encapsulated substrate is formed by moulding a polymer resin around the bare die after placement on to a flat polymer film pre‐coated with an adhesive layer. After curing of the resin, the circuit is formed by patterning via holes through the polymer film to the components, metallising the polymer film and patterning the metal into the desired interconnect pattern. Feature sizes are readily scaled to the complexity needed by the circuit, permitting the use of lower cost and higher yield board photopatterning processes and equipment. This paper will cover the development of this low cost technology and will describe the process. It will also describe the thermal, mechanical and electrical features of this process and show actual working prototype modules.

Details

Circuit World, vol. 21 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 June 1999

G. Harsányi, M. Réczey, R. Dobay, I. Lepsényi, Zs. Illyefalvi‐Vitéz, J. Van den Steen, A. Vervaet, W. Reinert, J. Urbancik, A. Guljajev, Cs. Visy, Gy. Inzelt and I. Bársony

Atmospheric dependent, gas sensitive resistors seem to be good candidates for detecting critical air pollution levels. Recently, great progress has been made in the development of…

685

Abstract

Atmospheric dependent, gas sensitive resistors seem to be good candidates for detecting critical air pollution levels. Recently, great progress has been made in the development of various sensor types, but less attention seems to be paid to the integration of sensor elements with different characteristics. The aim of this international project is to develop a smart hybrid gas multi‐sensor module for environmental applications, i.e. by combining classical thick‐ and thinfilm elements with polymerfilm based sensors and also a signal processing ASIC within a single package, which should be useful for all sensor types. The module should enable multi‐sensor operation as well, when connected to an intelligent signal‐processing unit.

Details

Sensor Review, vol. 19 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2004

K. Arshak, E. Moore, G.M. Lyons, J. Harris and S. Clifford

This paper reviews the range of sensors used in electronic nose (e‐nose) systems to date. It outlines the operating principles and fabrication methods of each sensor type as well…

12186

Abstract

This paper reviews the range of sensors used in electronic nose (e‐nose) systems to date. It outlines the operating principles and fabrication methods of each sensor type as well as the applications in which the different sensors have been utilised. It also outlines the advantages and disadvantages of each sensor for application in a cost‐effective low‐power handheld e‐nose system.

Details

Sensor Review, vol. 24 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 2000