Search results

1 – 10 of 93
Article
Publication date: 1 February 2021

Chrysoula Pandelidi, Tobias Maconachie, Stuart Bateman, Ingomar Kelbassa, Sebastian Piegert, Martin Leary and Milan Brandt

Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a…

Abstract

Purpose

Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade.

Design/methodology/approach

In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography.

Findings

A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample.

Originality/value

This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1988

THE self extinguising characteristics, chemical resistance and outstanding strength to weight ratio offered by ULTEM polyetherimide, from General Electric Plastics Europe (GEP)…

Abstract

THE self extinguising characteristics, chemical resistance and outstanding strength to weight ratio offered by ULTEM polyetherimide, from General Electric Plastics Europe (GEP), has given it an important role in aviation applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 60 no. 4
Type: Research Article
ISSN: 0002-2667

Content available
87

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 7 June 2019

Jakub Krzeminski, Bartosz Blicharz, Andrzej Skalski, Grzegorz Wroblewski, Małgorzata Jakubowska and Marcin Sloma

Despite almost limitless possibilities of rapid prototyping, the idea of 3D printed fully functional electronic device still has not been fulfilled – the missing point is a highly…

Abstract

Purpose

Despite almost limitless possibilities of rapid prototyping, the idea of 3D printed fully functional electronic device still has not been fulfilled – the missing point is a highly conductive material suitable for this technique. The purpose of this paper is to present the usage of the photonic curing process for sintering highly conductive paths printed on the polymer substrate.

Design/methodology/approach

This paper evaluates two photonic curing processes for the conductive network formulation during the additive manufacturing process. Along with the xenon flash sintering for aerosol jet-printed paths, this paper examines rapid infrared sintering for thick-film and direct write techniques.

Findings

This paper proves that the combination of fused deposition modeling, aerosol jet printing or paste deposition, along with photonic sintering, is suitable to obtain elements with low resistivity of 3,75·10−8 Ωm. Presented outcomes suggest the solution for fabrication of the structural electronics systems for daily-use applications.

Originality/value

The combination of fused deposition modelling (FDM) and aerosol jet printing or paste deposition used with photonic sintering process can fill the missing point for highly conductive materials for structural electronics.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 September 2023

Mustafa Soylak and Veysel Erturun

The purpose of this paper is to examine the effect of changing some riveting parameters on the riveting quality of a riveted aircraft structure. In this study, riveting was…

Abstract

Purpose

The purpose of this paper is to examine the effect of changing some riveting parameters on the riveting quality of a riveted aircraft structure. In this study, riveting was performed by applying friction under pressure.

Design/methodology/approach

During this friction riveting process, a feed of 3 mm/min was applied in the axial direction. Rotation speed values of 2,000, 2,200 and 2,400 rpm were selected. A 3-axis die milling machine was used to achieve the required positioning, pressing force and friction effect. 1.27 mm-thick Al 7075-T6 sheets and 2117-T3 forged rivets were used. The feed rate was applied at 1 mm/min in both tensile shear and cross-tensile tests.

Findings

The feasibility of friction riveting in 2117-T3 rivets was examined, it was shown that it could be done, and the most suitable rotation value for this process was determined.

Originality/value

Clamping force is one of the most important parameters for riveting quality. This study will contribute to a better understanding of the friction-forging riveting process along with the effects of riveting parameters. At the same time, it will lead to more research and expand the application of friction forging riveting to more structural connections.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 March 2015

David Roberson, Corey M Shemelya, Eric MacDonald and Ryan Wicker

The purpose of this paper is to demonstrate the strategy for increasing the applicability of material extrusion additive manufacturing (AM) technologies, based on fused deposition…

2141

Abstract

Purpose

The purpose of this paper is to demonstrate the strategy for increasing the applicability of material extrusion additive manufacturing (AM) technologies, based on fused deposition modeling (FDM), through the development of materials with targeted physical properties. Here, the authors demonstrate materials specifically developed for the manufacture of electromechanical and electromagnetic applications, the use of FDM-type processes in austere environments and the application of material extrusion AM.

Design/methodology/approach

Using a twin screw polymeric extrusion process, novel polymer matrix composites and blends were created where the base material was a material commonly used in FDM-type processes, namely, acrylonitrile butadiene styrene (ABS) or polycarbonate (PC).

Findings

The work presented here demonstrates that, through targeted materials development, the applicability of AM platforms based on FDM technology can be increased. Here, the authors demonstrate that that the physical properties of ABS and PC can be manipulated to be used in several applications such as electromagnetic and X-ray shielding. Other instances of the development of new materials for FDM led to mitigation of problems associated with the process such as surface finish and mechanical property anisotropy based on build orientation.

Originality/value

This paper is an overview of a research effort dedicated to increasing the amount of material systems available to material extrusion AM. Here materials development is shown to not only increase the number of suitable applications for FDM-type processes, but to be a pathway toward solving inherent problems associated with FDM such as surface finish and build orientation-caused mechanical property anisotropy.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3679

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1988

J.C. Curtis, K.J. Lodge and D.J. Pedder

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the…

Abstract

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the substrate and tracking system. It reviews the properties required of substrates and the limitations derived from the materials used and the processes needed to put tracks on them. Those areas where these requirements are in conflict are highlighted, including such low technology problems as the limited size availability of substrate prepregs which may limit the tracking density achievable on the newer, more advanced low dielectric materials. Some limitations and trade‐offs are identified.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 March 1995

P. Hunter

Like the conventional PCB, the Moulded Interconnect Device (MID), be it 2‐ or 3‐dimensional, will have, as its interconnection medium, conductive patterning or structuring upon…

Abstract

Like the conventional PCB, the Moulded Interconnect Device (MID), be it 2‐ or 3‐dimensional, will have, as its interconnection medium, conductive patterning or structuring upon the surface of the device. This interconnection pattern will, in the majority of MID products, take the form of a metal (usually copper) deposited upon the surface of the plastic. How this metal is deposited and remains attached to the surface is the critical step in the production of a MID. That is the bond, or adhesion, between plastic and the applied metal circuitry. Without a strong and reliable bond between circuitry and plastic it will not be possible to manufacture a MID with the characteristics of a conventional interconnection medium, the PCB, the technology it is probably replacing within the finished product. This paper describes the development of a chemical adhesion process, and how the selection of a suitable resin and its moulding parameters can influence the adhesion performance of the metallisation process.

Details

Circuit World, vol. 21 no. 3
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 1 March 2004

Jon Rigelsford

80

Abstract

Details

Sensor Review, vol. 24 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 93