Search results

1 – 2 of 2
Article
Publication date: 20 October 2021

Walid S. Abdel-Wakil, Tarek M. Salama, Elbadawy A. Kamoun, Farag Abd El Hai Ahmed, Wassem Hassan, Yaser A. El-Badry and Alaa Fahmy

This paper aims to synthesize new terpolymers by the emulsion polymerization technique composed of acrylamide-based polyurethane monomers (TPM and MPM) with different vinyl…

Abstract

Purpose

This paper aims to synthesize new terpolymers by the emulsion polymerization technique composed of acrylamide-based polyurethane monomers (TPM and MPM) with different vinyl acetate copolymer systems, such as vinyl acetate/butyl acrylate (VAc/BA), vinyl acetate/ethylhexyl acrylate (VAc/2-EHA) and vinyl acetate/vinyl ester of versatic acid (VAc/VEOVA 10) systems. The performance of the prepared terpolymers as binders in emulsion coatings and textile industries was investigated and compared with the analogous commercial ones.

Design/methodology/approach

New waterborne polyurethane-vinyl ester-vinyl acetate terpolymers with high solid content and nano-scale emulsions have been successfully synthesized in two steps. The polyurethane oligomers were prepared by the prepolymer method as the first step. The second step involved polymerization with different vinyl monomers. The synthesized terpolymers were characterized using FTIR, scanning electron microscope, thermogravimetric analysis, minimum film forming temperature and particle size analyzer methods.

Findings

The synthesized emulsion terpolymers have shown small particle sizes averaged of 70 nm and a narrow distribution range, along with good mechanical, thermal and chemical stabilities. The surface coating layers of the terpolymers also have some important in terms of smoothness, clarity and binding ability in water-based coating for up to 4425 scrub cycles at 30 GU. Further, a high potential application textile printing was achieved at high solid content of 47–50%.

Originality/value

The effects of different isocyanates and vinyl monomers on the properties of obtained emulsion coatings have been studied. The improvement consequences of the coating evaluation of the waterborne binders for emulsion paints have been described. The properties of polyester/cotton fabric print pigment printing of textiles appear to be most promising enhancements by using the prepared nanocomposites of PU-co-vinyl acetate-co-vinyl ester as waterborne binders. So that the prepared emulsions have the potential to replace solvent-based coatings as waterborne binders for both emulsion coating and textile printing applications.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 September 2021

Gemma Pascual, Josep García-Raurich, José M. Canal and Marta Riba-Moliner

This study aims to demonstrate that orange-derived and lemon-derived systems can be used in continuous processes as efficient adsorbents to the entrapment of some anionic and…

Abstract

Purpose

This study aims to demonstrate that orange-derived and lemon-derived systems can be used in continuous processes as efficient adsorbents to the entrapment of some anionic and cationic dyes in the textile dyeing wastewater effluents.

Design/methodology/approach

Physically and chemically modified orange and lemon mesocarps are used as natural adsorbents for the cationic dyes Basic Blue 3, Basic Yellow 21, Basic Red 18 and Basic Green 4 and the anionic dyes Acid Blue 264, Acid Yellow 49 and Acid Red 337, all commonly used in the textile dyeing industry. Adsorption capacities of the orange-derived and lemon-derived adsorbents on the dyes are studied simulating a batch and continuous industrial processes.

Findings

Results demonstrate that treated orange mesocarp (orange-derived adsorbent) can adsorb up to 97% of cationic Basic Green 4 in 30 min, whereas the lemon mesocarp (lemon-derived adsorbent) can retain up to 88% within the same time. In the case of anionic, 91% Acid Blue 264 is adsorbed by the orange mesocarp in 15 min, whereas 92% is adsorbed by the lemon homologue within the same time.

Originality/value

As far as the authors know, physically and chemically modified orange and lemon mesocarps have not been used on the removal of cationic (Basic Blue 3, Basic Yellow 21, Basic Red 18 and Basic Green 4) and anioinic (Acid Blue 264, Acid Yellow 49 and Acid Red 337) dyes of textile dyeing wastewater industry. It is a costless and efficient treatment that supposes, on the one hand, an eco-friendly and feasible process for discolouration of wastewater and, on the other, a valorisation (upcycling) of orange and lemon peels, which are not currently used.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2