Search results

1 – 10 of 358
Content available
Article
Publication date: 11 January 2008

169

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 1
Type: Research Article
ISSN: 0003-5599

Open Access
Article
Publication date: 21 March 2024

Joanna Haffer

The article aims to present the results of adapting the team boosting behaviors (TBB) scale to Polish cultural conditions and validating it.

Abstract

Purpose

The article aims to present the results of adapting the team boosting behaviors (TBB) scale to Polish cultural conditions and validating it.

Design/methodology/approach

The research methodology consisted of three steps. In the first step, I translated the TBB scale into Polish using a rigorous back-translation method. Next, to assess content validity, nine domain experts reviewed the initial version of the instrument for clarity and relevance. Finally, I applied the scale to a sample of 532 team members and underwent thorough psychometric testing to assess construct validity. I employed structural equation modeling (SEM) with the partial least squares (PLS) factor-based algorithm technique for confirmatory factor analysis to assess the scale’s reliability and validity.

Findings

After development, the Polish version of the TBB scale kept its three sub-scale structures. However, the validation process led to a slight reduction in the number of test items compared to the original scale.

Research limitations/implications

The findings imply that the Polish version of the scale is a valid and reliable tool for assessing TBB. However, I recommend additional studies to confirm this instrument’s structure.

Originality/value

The results confirmed the reliability and relevance of the tool for measuring TBBs in Polish cultural conditions. The tool provides the basis for implementing further research with the TBB construct in Poland and internationally.

Details

Central European Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2658-0845

Keywords

Content available
Article
Publication date: 16 April 2018

Clive M.J. Warren

593

Abstract

Details

Property Management, vol. 36 no. 2
Type: Research Article
ISSN: 0263-7472

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 September 2019

Laura D. Vallejo-Melgarejo, Ronald G. Reifenberger, Brittany A. Newell, Carlos A. Narváez-Tovar and José M. Garcia-Bravo

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light…

3577

Abstract

Purpose

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light transmitted and the index of refraction, which was measured with a prism spectrometer. Lenses and diffraction gratings were also printed and characterized. The focal length of the printed lenses agreed with predictions based on the thin lens equation. The periodicity and effective slit width of the printed gratings were determined from both optical micrographs and fits to the Fraunhofer diffraction equation. This study aims to demonstrate the advantages offered by a layer-by-layer DLP printing process for the manufacture of optical components for use in the visible region of the electromagnetic spectrum.

Design/methodology/approach

A 3D printer was used to print both lenses and diffraction gratings from Standard Clear PR48 photocurable resin. The manufacturing process of the lenses and the diffraction gratings differ mainly in the printing angle with respect to the printer x-y-axes. The transmission diffraction gratings studied here were manufactured with nominal periodicities of 10, 25 and 50 µm. The aim of this study was to optically determine the effective values for the distance between slits, d, and the effective width of the slits, w, and to compare these values with the printed layer thickness.

Findings

The normalized diffraction patterns measured in this experiment for the printed gratings with layer thickness of 10, 25 and 50 µm are shown by the solid dots in Figures 8(a)-(c). Also shown as a red solid line are the fits to the experimental diffraction data. The effective values of d and w obtained from fitting the data are compared to the nominal layer thickness of the printed gratings. The effective distance between slits required to fit the diffraction patterns are well approximated by the printed layer thickness to within 14, 4 and 16 per cent for gratings with a nominal 10, 25 and 50 µm layer thickness, respectively.

Research limitations/implications

Chromatic aberration is present in all polymer lenses, and the authors have not attempted to characterize it in this study. These materials could be used for achromatic lenses if paired with a crown-type material in an achromatic doublet configuration, because this would correct the chromatic aberration issues. It is worthwhile to compare the per cent transmission in cured PR48 resin (approximately 80 per cent) to the percent transmission found in common optical materials like BK7 (approximately 92 per cent) over the visible region. The authors attribute the lower transmission in PR48 to a combination of surface scattering and increased absorption. At the present time, the authors do not know what fraction of the lower transmission is related to the surface quality resulting from sample polishing.

Practical implications

There are inherent limitations to the 3D manufacturing process that affect the performance of lenses. Approximations to a curved surface in the design software, the printing resolution of the Autodesk Ember printer and the anisotropy due to printing in layers are believed to be the main issues. The performance of the lenses is also affected by internal imperfections in the printed material, in particular the presence of bubbles and the inclusion of debris like dust or fibers suspended in air. In addition, the absorption of wavelengths in the blue/ultraviolet produces an undesirable yellowing in any printed part.

Originality/value

One of the most interesting results from this study was the manufacture of diffraction gratings using 3D printing. An analysis of the diffraction pattern produced by these printed gratings yielded estimates for the slit periodicity and effective slit width. These gratings are unique because the effective slit width fills the entire volume of the printed part. This aspect makes it possible to integrate two or more optical devices in a single printed part. For example, a lens combined with a diffraction grating now becomes possible.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
231

Abstract

Details

Soldering & Surface Mount Technology, vol. 19 no. 3
Type: Research Article
ISSN: 0954-0911

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 9 January 2009

37

Abstract

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 September 2002

Marc Prensky

131

Abstract

Details

On the Horizon, vol. 10 no. 3
Type: Research Article
ISSN: 1074-8121

1 – 10 of 358