Search results

1 – 10 of over 1000
Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 January 2024

Xiangdi Yue, Yihuan Zhang, Jiawei Chen, Junxin Chen, Xuanyi Zhou and Miaolei He

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and…

Abstract

Purpose

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) techniques. This paper aims to provide a significant reference for researchers and engineers in robotic mapping.

Design/methodology/approach

This paper focused on the research state of LiDAR-based SLAM for robotic mapping as well as a literature survey from the perspective of various LiDAR types and configurations.

Findings

This paper conducted a comprehensive literature review of the LiDAR-based SLAM system based on three distinct LiDAR forms and configurations. The authors concluded that multi-robot collaborative mapping and multi-source fusion SLAM systems based on 3D LiDAR with deep learning will be new trends in the future.

Originality/value

To the best of the authors’ knowledge, this is the first thorough survey of robotic mapping from the perspective of various LiDAR types and configurations. It can serve as a theoretical and practical guide for the advancement of academic and industrial robot mapping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

113

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 April 2024

Matthew Peebles, Shen Hin Lim, Mike Duke, Benjamin Mcguinness and Chi Kit Au

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and…

Abstract

Purpose

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and localizing asparagus in the field based on point clouds from ToF imaging. Since the semantics are not included in the point cloud, it contains the geometric information of other objects such as stones and weeds other than asparagus spears. An approach is required for extracting the spear information so that a robotic system can be used for harvesting.

Design/methodology/approach

A real-time convolutional neural network (CNN)-based method is used for filtering the point cloud generated by a ToF camera, allowing subsequent processing methods to operate over smaller and more information-dense data sets, resulting in reduced processing time. The segmented point cloud can then be split into clusters of points representing each individual spear. Geometric filters are developed to eliminate the non-asparagus points in each cluster so that each spear can be modelled and localized. The spear information can then be used for harvesting decisions.

Findings

The localization system is integrated into a robotic harvesting prototype system. Several field trials have been conducted with satisfactory performance. The identification of a spear from the point cloud is the key to successful localization. Segmentation and clustering points into individual spears are two major failures for future improvements.

Originality/value

Most crop localizations in agricultural robotic applications using ToF imaging technology are implemented in a very controlled environment, such as a greenhouse. The target crop and the robotic system are stationary during the localization process. The novel proposed method for asparagus localization has been tested in outdoor farms and integrated with a robotic harvesting platform. Asparagus detection and localization are achieved in real time on a continuously moving robotic platform in a cluttered and unstructured environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2024

Zeye Fu, Jiahao Zou, Luxin Han and Qi Zhang

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud…

Abstract

Purpose

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is to be proposed and verified. The overpressure distribution produced by multiple cloud detonation and the influence of cloud spacing and fuel mass of every cloud on the overpressure distribution are to be studied.

Design/methodology/approach

A calculation method is used to obtain the global overpressure field distribution after single cloud detonation from the overpressure time history of discrete distance to detonation center after single cloud detonation. On this basis, the overpressure distribution produced by multi-cloud under different cloud spacing and different fuel mass conditions is obtained.

Findings

The results show that for 150 kg fuel, when the spacing of three clouds is 40 m, 50 m, respectively, the overpressure range of larger than 0.1 MPa is 5496.48 mˆ2 and 6235.2 mˆ2, which is 2.89 times and 3.28 times of that of single cloud detonation. The superposition effect can be ignored when the spacing between the three clouds is greater than 60 m. In the case of fixed cloud spacing, once the overpressure forms continuous effective superposition, the marginal utility of fuel decreases.

Originality/value

A model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is proposed and verified. Based on this method, the global overpressure field of single cloud detonation is reconstructed, and the superimposed overpressure distribution characteristics of three cloud detonation are calculated and analyzed.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 December 2023

Han Sun, Song Tang, Xiaozhi Qi, Zhiyuan Ma and Jianxin Gao

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose…

Abstract

Purpose

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose estimation accuracy and improve the overall system performance in outdoor environments.

Design/methodology/approach

Distinct from traditional approaches, MCFilter emphasizes enhancing point cloud data quality at the pixel level. This framework hinges on two primary elements. First, the D-Tracker, a tracking algorithm, is grounded on multiresolution three-dimensional (3D) descriptors and adeptly maintains a balance between precision and efficiency. Second, the R-Filter introduces a pixel-level attribute named motion-correlation, which effectively identifies and removes dynamic points. Furthermore, designed as a modular component, MCFilter ensures seamless integration into existing LiDAR SLAM systems.

Findings

Based on rigorous testing with public data sets and real-world conditions, the MCFilter reported an increase in average accuracy of 12.39% and reduced processing time by 24.18%. These outcomes emphasize the method’s effectiveness in refining the performance of current LiDAR SLAM systems.

Originality/value

In this study, the authors present a novel 3D descriptor tracker designed for consistent feature point matching across successive frames. The authors also propose an innovative attribute to detect and eliminate noise points. Experimental results demonstrate that integrating this method into existing LiDAR SLAM systems yields state-of-the-art performance.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 1000