Search results

1 – 10 of 408
Article
Publication date: 18 January 2016

Ishaq Jarallah and Vasudevan P Kanjirakkad

This paper aims to offer the aerodynamic testing community a new procedure for manufacturing high-quality aerodynamic probes suitable for 3D flow measurements with consistent…

Abstract

Purpose

This paper aims to offer the aerodynamic testing community a new procedure for manufacturing high-quality aerodynamic probes suitable for 3D flow measurements with consistent geometry and calibration by taking advantage of the additive manufacturing technology.

Design/methodology/approach

The design methodology combines the advantages and flexibilities of computer aided design (CAD)/computer aided manufacturing (CAM) along with the use of computational fluid dynamics to design and analyse suitable probe shapes prior to manufacturing via rapid prototyping.

Findings

A viable procedure to design and possibly batch manufacture geometrically accurate pneumatic probes with consistent calibration is shown to be possible through this work. Multi-jet modelling prototyping methods with wax-based support materials are found to be a cost-effective method when clean and long sub-millimetre pressure channels are to be cut.

Originality/value

Utilisation of the geometry consistency that is made possible by 3D printing technology for the design and development of pneumatic probes is described. It is suggested that the technique could lead to batch production of identical probes, thus avoiding precious time of a skilled labourer and elaborate individual calibration requirement.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 September 2016

Krzysztof Olasek, Maciej Karczewski, Michal Lipian, Piotr Wiklak and Krzysztof Józwik

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by…

Abstract

Purpose

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by equipping the rotor with a diffusing channel ended with a brim (diffuser augmented wind turbine – DAWT). The purpose of this paper is to design an experimental stand and perform the measurements of velocity vector fields through the diffuser and power characteristic of the wind turbine.

Design/methodology/approach

The experiments were carried out in a small subsonic wind tunnel at the Institute of Turbomachinery, Lodz University of Technology. An experimental stand design process as well as measurement results are presented. Model size sensitivity study was performed at the beginning. The experimental campaign consisted of velocity measurements by means of particle image velocimetry (PIV) and pneumatic pitot probe as well as torque and rotational velocity measurements.

Findings

Characteristics (power coefficient vs tip speed ratio) of the bare and shrouded wind turbine were obtained. The results show an increase in the wind turbine power up to 70-75 per cent by shrouding the rotor with a diffuser. The mechanisms responsible for such a power increase were well explained by the PIV and pneumatic measurement results revealing the nature of the flow through the diffuser.

Research limitations/implications

Experimental stand for wind turbine rotor testing is of a preliminary character. Most optimal methodology for obtaining power characteristic should be determined now. Presented results can serve as good input for choice of stable and reliable control system of wind turbine operational parameters.

Practical implications

A 3 kW DAWT is being developed at the Institute of Turbomachinery, Lodz University of Technology. Aim of the study is to design a compact and smart wind turbine optimised for low wind speed conditions. Developed wind turbine has a potential to be used as an effective element within a net of distributed generation, e.g. for domestic use.

Originality/value

Research carried out is the continuation of theoretical study began in 1970s. It was also inspired by practical solutions proposed by Japanese researchers few years ago. Presented paper is the summary of work devoted to optimisation of the DAWT for wind conditions in the region. Original solution has been applied, e.g. for experimental stand design (3D printing application).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1987

P. Nicholas

Automatic in‐circuit testing is a cost effective facility for not only testing assembled printed circuit boards but for providing component level diagnostics very quickly with an…

Abstract

Automatic in‐circuit testing is a cost effective facility for not only testing assembled printed circuit boards but for providing component level diagnostics very quickly with an average PCB test time of less than 30 seconds. The in‐circuit tester relies on a customised fixture (essentially a bed‐of‐nails) to interface particular PCBs to the system and a computer programme to control the hardware to test all the individual components on the PCB to their own specification irrespective of how the circuitry is configured. So if all the individual components work and are interconnected correctly, the complete assembly should function correctly. Traditionally the fixture requirements for most PCBs have been straightforward. In general, components are mounted on only one side of the board allowing easy access to the other side where all the tracks may be accessed by a bed of nails. However, the introduction of surface mount technology introduces mechanical restraints on this concept. Components can be mounted on both sides of the PCB, possibly causing an access problem. Not all circuit interconnections may be available on a single side of the PCB, necessitating dual side fixturing. The pitch of components together with pad and track sizes has dramatically reduced, possibly requiring the use of smaller test probes and certain SMDs do not allow direct probing at all. All these things can present problems but they do not mean that in‐circuit testing is no longer the solution to the test and repair problem. On the contrary, it is particularly well suited to the production problems being experienced by manufacturers. And where components are difficult to remove and replace on a PCB, it is particularly important that the fault diagnosis is to component level. This paper describes the problem in detail and goes on to demonstrate that if a code of practice is followed within the design of a new PCB, then there need not be a problem. Much can be achieved very simply within the design that can improve the testability of PCBs so that in‐circuit testing remains a very cost effective system. Experience demonstrates that most designs could be fixtured with traditional techniques and that means cheap and reliable fixturing.

Details

Circuit World, vol. 13 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 December 1986

Next generation commercial and civil aircraft will require a de‐centralised system of obtaining and employing air data. Rosemount has capitalised on its massive experience in…

Abstract

Next generation commercial and civil aircraft will require a de‐centralised system of obtaining and employing air data. Rosemount has capitalised on its massive experience in sensor technology and electronics to meet the future needs of the manufacturer and the operator with a product concept called the Distributed Air Data System (DADS).

Details

Aircraft Engineering and Aerospace Technology, vol. 58 no. 12
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 25 January 2011

28

Abstract

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 April 2004

K.M. El‐Khatib, M.O. Abou Helal, A.A. El‐Moneim and H. Tawfik

This study investigated the corrosion stability of high velocity oxy‐fuel (HVOF) spray SUS316L coatings on aluminium substrate as lightweight bipolar plate materials for proton…

Abstract

This study investigated the corrosion stability of high velocity oxy‐fuel (HVOF) spray SUS316L coatings on aluminium substrate as lightweight bipolar plate materials for proton exchange membrane fuel cells (PEMFC). Contact resistance, microhardness and structure of the coatings were characterised using a four‐point probe, pneumatic microhardness, XRD and scanning electron microscope techniques. Preliminary electrochemical results indicate that the SUS316L coated plates significantly lowered the corrosion current of the aluminium substrate by more than one order of magnitude. Corrosion stability in relation to the coating thickness is discussed in terms of the structure composition and transpassivity of chromium.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2021

Jerome de Laborderie, Cedric Babin and Fabrizio Fontaneto

The present paper aims at evaluating the lattice Boltzmann method (LBM) on a high-subsonic high-pressure compressor stage at nominal regime.

Abstract

Purpose

The present paper aims at evaluating the lattice Boltzmann method (LBM) on a high-subsonic high-pressure compressor stage at nominal regime.

Design/methodology/approach

The studied configuration corresponds to the H25 compressor operated in a closed-loop test rig at the von Karman Institute. Several operating points are simulated with LBM for two grids of successive refinements. A detailed analysis is performed on the time-averaged flow predicted by LBM, using a comparison with experimental and existing RANS data.

Findings

The finest grid is found to correctly predict the mean flow across the machine, as well as the influence of the rotor tip gap size. Going beyond time-averaged data, some flow analysis is performed to show the relevance of such a high-fidelity method applied to a compressor configuration. In particular, vortical structures and their evolution with the operating points are clearly highlighted. Spectral analyses finally hint at a proper prediction of tonal and broadband contents by LBM.

Originality/value

The application of LBM to high-speed turbomachinery flows is very recent. This paper validates one of the first LBM simulations of a high-subsonic high-pressure compressor stage.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2016

Chao Wang, Heyang Yu, Ni Zhan, Xubing Kang and Jingyu Zhang

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Abstract

Purpose

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Design/methodology/approach

A new vibration probe sensor based on polyvinylidene fluoride (PVDF) piezoelectric film is designed. The particle impact model according to Hertz contacting theory is presented. The average amplitude, standard deviation and spectral peak at the natural frequency of the probe (21.2 kHz) of the signals acquired through experiments are chosen as characteristic quantities for further analysis.

Findings

Through experimental study of relation between three characteristic quantities and the mass flow rate and air flow velocity, a good regularity is found in the average amplitude and the spectral peaks at natural frequency of the probe. According to the particle impact model, the structure of quantitative model is built and parameters of two models are calculated from experimental data. Additionally, tests are made to estimate mass flow rate. The average errors are 5.85 and 4.26 per cent, while the maximum errors are 10.81 and 8.65 per cent. The spectral peak at natural frequency of the probe is more applicable for mass flow rate measurement.

Practical implications

The sensor designed and the quantitative models established may be used in dilute phase pneumatic conveying lines of coal-fired power plants, cement manufacturing facilities and so on.

Originality/value

First, the new sensor is designed and the quantitative models are established. Second, the spectral peak at natural frequency of the probe is found that can be used for measurement of mass flow rate.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 June 2022

Aman Arora, Debadrata Sarkar, Arunabha Majumder, Soumen Sen and Shibendu Shekhar Roy

This paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive…

Abstract

Purpose

This paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive robotic applications. This requires extensive characterization, data set generation and meaningful modelling between PAM characteristics and design variables. Such a characterization should cover a wide range of design and operation parameters. This is a stepping stone towards generating a design guide for this highly popular compliant actuator, just like any conventional element of a mechanism.

Design/methodology/approach

Characterization of a large pool of custom fabricated PAMs of varying designs is performed to determine their static and dynamic behaviours. Metaheuristic optimizer-based artificial neural network (ANN) structures are used to determine eight different models representing PAM behaviour. The assistance of knee flexion during level walking is targeted for evaluating the applicability of the developed actuator by attaching a PAM across the joint. Accordingly, the PAM design and the actuation strategy are optimized through a tabletop emulator.

Findings

The dependence of passive length, static contraction, dynamic step response for inflation and deflation of the PAMs on their design dimensions and operating parameters is successfully modelled by the ANNs. The efficacy of these models is investigated to successfully optimize the PAM design, operation parameters and actuation strategy for using a PAM in assisting knee flexion in human gait.

Originality/value

Characterization of static and the dynamic behaviour of a large pool of PAMs with varying designs over a wide range of operating conditions is the novel feature in this article. A lucid customizable fabrication technique is discussed to obtain a wide variety of PAM designs. Metaheuristic-based ANNs are used for tackling high non-linearity in data while modelling the PAM behaviour. An innovative tabletop emulator is used for investigating the utility of the models in the possible application of PAMs in assistive robotics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 1970

J. Lyell

February 23, 1970 Master and Servant — Negligence — Safe system of work — Plant and equipment — Apparatus designed by employer — Whether duty to design competently — Unpredictable…

Abstract

February 23, 1970 Master and Servant — Negligence — Safe system of work — Plant and equipment — Apparatus designed by employer — Whether duty to design competently — Unpredictable behaviour of apparatus known to employer — Employer's duty to warn employees and indicate precautions to be taken — Employment of maintenance fitter to rectify fault — Whether affecting employer's general duty of care or precautions — Employee's reliance on employer's assurance that apparatus safe — Whether negligent.

Details

Managerial Law, vol. 8 no. 3
Type: Research Article
ISSN: 0309-0558

1 – 10 of 408