Search results

1 – 10 of 10
Article
Publication date: 19 July 2019

Peyman Maghsoudi, Sadegh Sadeghi, Qingang Xiong and Saiied Mostafa Aminossadati

Because of the appreciable application of heat recovery systems for the increment of overall efficiency of micro gas turbines, promising evaluation and optimization are crucial…

Abstract

Purpose

Because of the appreciable application of heat recovery systems for the increment of overall efficiency of micro gas turbines, promising evaluation and optimization are crucial. This paper aims to propose a multi-factor theoretical methodology for analysis, optimization and comparison of potential plate-fin recuperators incorporated into micro gas turbines. Energetic, exergetic, economic and environmental factors are covered.

Design/methodology/approach

To demonstrate applicability and reliability of the methodology, detailed thermo-hydraulic analysis, sensitivity analysis and optimization are conducted on the recuperators with louver and offset-strip fins using a genetic algorithm. To assess the relationship between investment cost and profit for the recuperated systems, payback period (PBP), which incorporates all the factors is used as the universal objective function. To compare the performance of the recuperated and non-recuperated systems, exergy efficiency, exergy destruction and corresponding cost rate, fuel consumption and environmental damage cost rates, capital and operational cost rates and acquired profit rates are determined.

Findings

Based on the results, optimal PBP of the louvered-fin recuperator (147 days) is slightly lower than that with offset-strip fins (153 days). The highest profit rate is acquired by reduction of exergy destruction cost rate and corresponding decrements for louver and offset-strip fins are 2.3 and 3.9 times compared to simple cycle, respectively.

Originality/value

This mathematical study, for the first time, focuses on introducing a reliable methodology, which covers energetic, exergetic, economic and environmental points of view beneficial for design and selection of efficient plate-fin recuperators for micro gas turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Ali Akbar Abbasian Arani, Ali Arefmanesh and Hamidreza Ehteram

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of…

Abstract

Purpose

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of ash fouling characteristics during the transient/steady-state simulation and optimization of a 3D complex heat exchanger equipped with inner plain fins and side plate fins are studied.

Design/methodology/approach

For the particle dispersion modeling, the discrete phase model is applied and the flow field has been solved using SIMPLE algorithm.

Findings

According to obtained results, for the recuperator equipped with combine inner plain and side plate fins, determination of ash fouling characteristics is really important, effective and determinative. It is clear that by underestimating the ash fouling characteristics, the achieved results are wrong and different with reality.

Originality/value

Finally, the configuration with inner plain fins with characteristics of: di =5 mm, do = 6 mm, dg = 2 mm, dk = 3 mm and NIPFT = 9 and side plate fins with characteristics of: TF = 3 mm, PF = 19 mm, NSPF = 17·2 = 34, WF = 10 mm, HF = 25 mm, LF = 24 mm and ß = 0° is introduced as the optimum model with the best performance among all studied configurations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 May 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

To advance the design of heat exchanged gas turbine propulsion aeroengines utilising experience gained from early development testing, and based on technologies prevailing in the…

3531

Abstract

Purpose

To advance the design of heat exchanged gas turbine propulsion aeroengines utilising experience gained from early development testing, and based on technologies prevailing in the 1970‐2000 time frame.

Design/methodology/approach

With emphasis on recuperated helicopter turboshaft engines, particularly in the 1,000 hp (746 kW) class, detailed performance analyses, parametric trade‐off studies, and overall power plant layouts, based on state‐of‐the‐art turbomachinery component efficiencies and high‐temperature heat exchanger technologies, were undertaken for several engine configuration concepts.

Findings

Using optimised cycle parameters, and the selection of a light weight tubular heat exchanger concept, an attractive engine architecture was established in which the recuperator was fully integrated with the engine structure. This resulted in a reduced overall engine weight and lower specific fuel consumption, and represented a significant advancement in technology from the modified simple‐cycle engines tested in the late 1960s.

Practical implications

While heat exchanged engine technology advancements were projected, there were essentially two major factors that essentially negated the continued study and development of recuperated aeroengines, namely again as mentioned in Part I, the reduced fuel consumption was not regarded as an important economic factor in an era of low‐fuel cost, and more importantly in this time frame very significant simple‐cycle engine performance advancements were made with the use of significantly higher pressure ratios and increased turbine inlet temperatures. Simply stated, recuperated variants could not compete with such a rapidly moving target.

Originality/value

Establishing an engine design concept in which the recuperator was an integral part of the engine structure to minimise the overall power plant weight was regarded as a technical achievement. Such an approach, together with the emergence of lighter weight recuperators of assured structural integrity, would find acceptance around the year 2000 when there was renewed interest in the use of more efficient heat exchanged variants towards the future goal of establishing “greener” aeroengines, and this is discussed in Part III of this paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 21 March 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

Interest is currently being expressed in heat exchanged propulsion gas turbines for a variety of aeroengine applications, and in support of this, the aim of this paper is to…

3524

Abstract

Purpose

Interest is currently being expressed in heat exchanged propulsion gas turbines for a variety of aeroengine applications, and in support of this, the aim of this paper is to evaluate the relevance of experience gained from development testing of several recuperated aeroengines in the USA in the late 1960s.

Design/methodology/approach

Technology status, including engine design features, performance, and specific weight of recuperated propulsion gas turbines based on radial and axial turbomachinery, that were development tested in the power range of about 300 to 4,000 hp (224 to 2,984 kW) is discussed in Part I.

Findings

A successful flight worthiness test was undertaken in the USA of a helicopter powered solely by a recuperated turboshaft engine and this demonstrated a specific fuel consumption reduction of over 25 percent compared with the simple‐cycle engine. However; in an era of low‐fuel cost, and uncertainty about the long‐term structural integrity of the high‐temperature heat exchanger, further development work was not undertaken.

Practical implications

The gas turbines tested were based on conventional simple‐cycle engines with essentially “bolted‐on” recuperators. Optimum approaches to minimize engine overall weight were needed in which the recuperator was integrated with the engine structure from the onset of design, and these are discussed in Part II.

Originality/value

Based on engine hardware testing, a formidable technology base was established, which although dated, could provide insight into the technical issues likely to be associated with the introduction of future heat exchanged aeroengines. These are projected to have the potential for reduced fuel burn, less emissions, and lower noise, and recuperated and intercooled turboshaft, turboprop, and turbofan variants are discussed in Part III.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 July 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on…

7832

Abstract

Purpose

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on reduced emissions, lower fuel burn, and less noise.

Design/methodology/approach

Aeroengine performance analyses were carried out covering a wide range of parameters for more complex thermodynamic cycles. This led to the identification of major component features and the establishing of preconceptual aeroengine layout concepts for various types of recuperated and ICR variants.

Findings

Novel aeroengine architectures were identified for heat exchanged turboshaft, turboprop, and turbofan variants covering a wide range of applications. While conceptual in nature, the results of the analyses and design studies generally concluded that heat exchanged engines represent a viable solution to meet demanding defence and commercial aeropropulsion needs in the 2015‐2020 timeframe, but they would require extensive development.

Research limitations/implications

As highlighted in Parts I and II, early development work was focused on the use of recuperation, but this is only practical with compressor pressure ratios up to about 10. For today's aeroengines with pressure ratios up to about 50, improvement in SFC can only be realised by incorporating intercooling and recuperation. The new aeroengine concepts presented are clearly in an embryonic stage, but these should enable gas turbine and heat exchanger specialists to advance the technology by conducting more in‐depth analytical and design studies to establish higher efficiency and “greener” gas turbine aviation propulsion systems.

Originality/value

It is recognised that meeting future environmental and economic requirements will have a profound effect on aeroengine design and operation, and near‐term efforts will be focused on improving conventional simple‐cycle engines. This paper has addressed the longer‐term potential of heat exchanged aeroengines and has discussed novel design concepts. A deployment strategy, aimed at gaining confidence with emphasis placed on assuring engine reliability, has been suggested, with the initial development and flight worthiness test of a small recuperated turboprop engine for UAVs, followed by a larger recuperated turboshaft engine for a military helicopter, and then advancement to a larger and far more complex ICR turbofan engine.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 September 2000

Esa Utriainen and Bengt Sundén

A three‐dimensional numerical study was conducted to assess the hydraulic and heat transfer performance of a primary surface type heat exchanger surface, called the trapezoidal…

Abstract

A three‐dimensional numerical study was conducted to assess the hydraulic and heat transfer performance of a primary surface type heat exchanger surface, called the trapezoidal cross wavy (TCW) duct. This duct is similar to the ducts being used in compact recuperators manufactured by Solar Turbines Inc. The governing equations, i.e. the mass conservation equation, Navier‐Stokes equations and the energy equation, are solved numerically by a finite volume method for boundary fitted coordinates. Periodic boundary conditions are imposed in the main flow direction. In this particular case laminar convective flow and heat transfer prevail. Owing to the complex geometry a complicated secondary flow pattern appears in the cross‐sectional planes. Details of the recuperator ducts and the numerical method, as well as relevant results, are presented. The overall results are also compared with corresponding results (i.e. Nu numbers, friction factors) of straight ducts with various cross‐sectional shapes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 August 2023

Mingqiu Zheng, Chenxing Hu and Ce Yang

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent…

Abstract

Purpose

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery. Aiming at meeting the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery, a fast method for predicting flow fields with periodic behavior is proposed here, with verification in the context of a radial turbine (RT).

Design/methodology/approach

Sparsity-promoting dynamic mode decomposition is used to determine the dominant coherent structures of the unsteady flow for mode selection, and for flow-field prediction, the characteristic parameters including amplitude and frequency are predicted using one-dimensional Gaussian fitting with flow rate and two-dimensional triangulation-based cubic interpolation with both flow rate and rotation speed. The flow field can be rebuilt using the predicted characteristic parameters and the chosen model.

Findings

Under single flow-rate variation conditions, the turbine flow field can be recovered using the first seven modes and fitted amplitude modulus and frequency with less than 5% error in the pressure field and less than 9.7% error in the velocity field. For the operating conditions with concurrent flow-rate and rotation-speed fluctuations, the relative error in the anticipated pressure field is likewise within an acceptable range. Compared to traditional numerical simulations, the method requires a lot less time while maintaining the accuracy of the prediction.

Research limitations/implications

It would be challenging and interesting work to extend the current method to nonlinear problems.

Practical implications

The method presented herein provides an effective solution for the fast prediction of unsteady flow fields in the design of turbomachinery.

Originality/value

A flow prediction method based on sparsity-promoting dynamic mode decomposition was proposed and applied into a RT to predict the flow field under various operating conditions (both rotation speed and flow rate change) with reasonable prediction accuracy. Compared with numerical calculations or experiments, the proposed method can greatly reduce time and resource consumption for flow field visualization at design stage. Most of the physics information of the unsteady flow was maintained by reconstructing the flow modes in the prediction method, which may contribute to a deeper understanding of physical mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1999

Shuichi Torii, Wen‐Jei Yang and Shinzaburo Umeda

A theoretical and experimental study is performed to investigate unsteady, two‐dimensional, incompressible fluid flow over both sides of a slot‐perforated flat surface, which is…

Abstract

A theoretical and experimental study is performed to investigate unsteady, two‐dimensional, incompressible fluid flow over both sides of a slot‐perforated flat surface, which is placed in a two‐dimensional channel. The governing boundary‐layer equations are discretized by means of a finite‐difference technique to determine streamwise and transverse velocity components. The roles of both the Reynolds number and the ratio of the slot width, d, to the plate thickness, δ, on the velocity field are disclosed. It is found from the study that: (i) the flow pattern between two plates can be classified into four categories depending on a combination of Re and d/δ, (ii) at a small value of Re and/or d/δ, flow over the slot exhibits no timewise variation, (iii) when Re and d/δ exceed certain values, an alternate crossing of flow from one side of the plate to the other occurs across the slot, and (iv) a further increase in Re results in a complex flow both inside the slot and on the plate downstream of the slot. These results are confirmed by the flow visualization using ion‐exchange resins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1951

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well…

Abstract

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well as in view of the prospects of flight at high altitudes. We are therefore printing below summaries of all the papers read at the recent Anglo‐American conference on the subject, although some of them are not directly concerned with aeronautical applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 November 2001

Arash Saidi and Bengt Sundén

Numerical analysis of the instantaneous flow and heat transfer has been carried out for offset strip fin geometries in self‐sustained oscillatory flow. The analysis is based on…

Abstract

Numerical analysis of the instantaneous flow and heat transfer has been carried out for offset strip fin geometries in self‐sustained oscillatory flow. The analysis is based on the two‐dimensional solution of the governing equations of the fluid flow and heat transfer with the aid of appropriate computational fluid dynamics methods. Unsteady calculations have been carried out. The obtained time‐dependent results are compared with previous numerical and experimental results in terms of mean values, as well as oscillation characteristics. The mechanisms of heat transfer enhancement are discussed and it has been shown that the fluctuating temperature and velocity second moments exhibit non‐zero values over the fins. The creation processes of the temperature and velocity fluctuations have been studied and the dissimilarity between these has been proved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 10