Search results

1 – 10 of 24
Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 January 2022

Mustafa S. Al-Khazraji, M. J. Jweeg and S. H. Bakhy

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation…

Abstract

Purpose

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation theory (HSDT) was simplified for the dynamic analysis of LHSP. Furthermore, the effects of honeycomb parameters on the value of natural frequency (NF) of vibration were explored.

Design/methodology/approach

This paper applies HSDT to the analysis of composite LHSP to derive four vibration differential equations of motion and solve it to find the NF of vibration. Two analytical models (Nayak and Meunier models) were selected from literature for comparison of the NF of vibration. In addition, a numerical model was built by using ABAQUS and the results were compared. Furthermore, parametric studies were conducted to explore the effect of honeycomb parameters on the value of the NF of vibration.

Findings

The present model is successful in simplifying HSDT for the analysis of LHSP. The first five natural frequencies of vibration were calculated analytically and numerically. In the parametric study, increasing core height or young’s modulus or changing laminate layup will increase the value of NF of vibration. Furthermore, increasing plate constraint (using clamped edge boundary condition) will increase the value of NF of vibrations.

Research limitations/implications

The current analysis is suitable for all-composite symmetric LHSP. However, for isotropic or non-symmetric materials, minor modifications might be adopted.

Originality/value

The application of simplified HSDT to the analysis of LHSP is one of the important values of this research. The other is the successful and complete dynamic analysis of all-composite LHSP.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 January 2023

Nor Salwani Hashim and Fatimah De’nan

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads…

Abstract

Purpose

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads. Therefore, it is possible to design the opening in a different arrangement of web opening to achieve section efficiency, thus improving the strength and torsional behaviour of the section with web opening. This study aims to focus on the finite element analysis of I-beam with and without openings in steel section dominated to lateral-torsional buckling behaviour.

Design/methodology/approach

In this work, the analysis of different sizes, shapes and arrangements of web opening is performed by using LUSAS application to conduct numerical analysis on lateral-torsional buckling behaviour. This involves three diameter sizes of web opening, five types of opening shapes and two criteria of the model.

Findings

The section with c-hexagon web opening was placed about 200-mm centre to centre and 100-mm edge distance, contribute to 7.26% increase of buckling capacity. For the section with 150-mm centre to centre and 50-mm edge distance, the occurrence of local buckling contributes to decrease of lateral buckling section capacity to 19.943 kNm, where pure lateral-torsional buckling mostly occurred because of prevented section. Besides that, the web opening diameter was also analysed. The web crippling was observed because of the increase of opening diameter from 0.67 to 0.80 D.

Originality/value

This contributes to a decrease in buckling capacity as figured in the contour of the deformed shape. For Model 1, an increase of buckling capacity (31.46%) is observed when the opening diameter are changed from 0.67 to 0.80 D.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2022

Ali Mohammed Ali, Manar Hamid Jasim and Bashar Dheyaa Hussein Al-Kasob

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the…

Abstract

Purpose

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.

Design/methodology/approach

In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.

Findings

The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.

Originality/value

This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 24