Search results

1 – 7 of 7
Article
Publication date: 20 March 2024

Malav R. Sanghvi, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the…

Abstract

Purpose

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the ferrocyanide used on resulting pigment properties is studied.

Design/methodology/approach

Prussian blue is commonly synthesized by direct or indirect methods, through iron salt and ferrocyanide/ferricyanide reactions. In this study, the direct, single-step process was pursued by dropwise addition of the ferrocyanide into ferric chloride (both as aqueous solutions). Two batches – (K-PB) and (Na-PB) – were prepared by using potassium ferrocyanide and sodium ferrocyanide, respectively. The development of pigment was confirmed by an identification test and characterized by spectroscopic techniques. Pigment properties were determined, and light fastness was observed for acrylic emulsion films incorporating dispersed pigment.

Findings

The two pigments differed mainly in elemental detection owing to the dissimilar ferrocyanide being used; IR spectroscopy where only (Na-PB) showed peaks indicating water molecules; and bleeding tendency where (K-PB) was water soluble whereas (Na-PB) was not. The pigment exhibited remarkable blue colour and good bleeding resistance in several solvents and showed no fading in 24 h of light exposure though oil absorption values were high.

Originality/value

This article is a comparative study of Prussian blue pigment properties obtained using different ferrocyanides. The dissimilarity in the extent of water solubility will influence potential applications as a colourant in paints and inks. K-PB would be advantageous in aqueous formulations to confer a blue colour without any dispersing aid but unfavourable in systems where other coats are water-based due to their bleeding tendency.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 1 March 2024

Priyajit Mondal, Dhritishree Ghosh, Madhupa Seth and Subhra Kanti Mukhopadhyay

The purpose of this article is to provide information about interactions between pink-pigmented facultative methylotroph (PPFM) organisms and plants, their molecular mechanisms of…

Abstract

Purpose

The purpose of this article is to provide information about interactions between pink-pigmented facultative methylotroph (PPFM) organisms and plants, their molecular mechanisms of methylotrophic metabolism, application of PPFMs in agriculture, biotechnology and bioremediation and also to explore lacuna in PPFMs research and direction for future research.

Design/methodology/approach

Research findings on PPFM organisms as potent plant growth promoting organisms are discussed in the light of reports published by various workers. Unexplored field of PPFM research are detected and their application as a new group of biofertilizer that also help host plants to overcome draught stress in poorly irrigated crop field is suggested.

Findings

PPFMs are used as plant growth promoters for improved crop yield, seed germination capacity, resistance against pathogens and tolerance against drought stress. Anti-oxidant and UV resistant properties of PPFM pigments protect the host plants from strong sunshine. PPFMs have excellent draught ameliorating capacity.

Originality/value

To meet the ever increasing world population, more and more barren, less irrigated land has to be utilized for agriculture and horticulture purpose and use of PPFM group of organisms due to their draught ameliorating properties in addition to their plant growth promoting characters will be extremely useful. PPFMs are also promising candidates for the production of various industrially and medicinally important enzymes and other value-added products. Wider application of this ecofriendly group of bacteria will reduce crop production cost thus improving economy of the farmers and will be a greener alternative of hazardous chemical fertilizers and fungicides.

Graphicalabstract:

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Book part
Publication date: 1 February 2024

Serkan Çalışkan

In this chapter, a situation analysis was made on the use of technology in gastronomy, an ever-growing and exciting research area. The use of technology is essential in food…

Abstract

In this chapter, a situation analysis was made on the use of technology in gastronomy, an ever-growing and exciting research area. The use of technology is essential in food production processes as well as in all sectors, and accordingly, the number of research on the subject has increased in recent years. Therefore, in the study, information is also given about trend applications today in addition to the use of technology in gastronomy. It is aimed to present the studies conducted by different disciplines together, to reveal the current situation in the light of the studies carried out on a national and international scale and to support possible future studies.

Article
Publication date: 25 July 2022

Tuba Kavas Akarca, Merve Karayol and Isinay E. Yuzay

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its…

Abstract

Purpose

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its suitability for use in packaging applications.

Design/methodology/approach

Different loading levels (1 and 5 Wt.%) of precipitated silica or kaolin particles were incorporated into NC/acrylic-based coating formulations and applied on low-density polyethylene (LDPE) films. The coatings and coated LDPE films were characterized in terms of structural, physical, mechanical, thermal, optical, surface, morphological and water vapor barrier properties.

Findings

The glossiness of the coating formulations decreased by increasing the precipitated silica and kaolin content. The incorporation of kaolin (1 and 5 Wt.%) and precipitated silica (1 Wt.%) had no significant effect on the melting temperature of LDPE film; however, with the addition of 5 Wt.% precipitated silica, the melting and crystallization temperatures were significantly changed. The incorporation of 5 Wt.% precipitated silica and kaolin also enhanced the water vapor barrier properties of LDPE films. The light transmittance declined with the precipitated silica and kaolin addition, especially in the ultraviolet (UV)-A/UV-B spectrum regions indicating an excellent UV light protection.

Originality/value

It was concluded that NC/acrylic resins coatings containing precipitated silica and kaolin exhibit improved thermal stability, UV and water vapor barrier properties and have the potential for use in packaging applications.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2024

Amna Farrukh and Aymen Sajjad

Manufacturing companies continue to encounter a diverse set of obstacles while embracing sustainable development goals. Accordingly, the purpose of this study is to explore…

Abstract

Purpose

Manufacturing companies continue to encounter a diverse set of obstacles while embracing sustainable development goals. Accordingly, the purpose of this study is to explore critical sustainable development-related barriers to flexible packaging manufacturing companies in the New Zealand context.

Design/methodology/approach

Drawing on a qualitative multiple case studies approach, the authors collected data from the New Zealand flexible packaging industry. Semistructured interviews were conducted with the senior corporate managers in two large flexible packaging companies. Following the thematic analysis approach, the authors analyzed the information collected from the participants and synthesized our findings under the key dimensions of internal and external barriers to sustainable development.

Findings

The findings revealed that internal barriers to sustainable flexible packaging are linked to economic, operational and technical issues. Conversely, external barriers include global crises and disruption, customer behavior and preferences and institutional and infrastructural-related aspects. Based on the analysis of empirical findings, the authors further identified the underlying reasons for sustainable flexible packaging barriers and recommended guidelines that could assist corporate managers and policymakers in addressing obstacles inhibiting the flexible packaging industry from adopting sustainable business practices.

Originality/value

The authors argue that this study is one of the early studies to consider inhibiting factors to incorporate sustainable development into the New Zealand flexible packaging industry context. Building on a range of theoretical perspectives, the authors extend the current body of knowledge seeking to advance the sustainable development agenda in the New Zealand flexible packaging industry and offer recommended pathways fostering sustainable development in a distinctive manufacturing context.

Details

Corporate Governance: The International Journal of Business in Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-0701

Keywords

Article
Publication date: 15 August 2022

Wanting Zhao and Lijun Chen

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties…

Abstract

Purpose

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties, which make the polymer be widely used in coatings, dyes, adhesives and other products. The purpose of this study is to prepare self-crosslinked long fluorocarbon acrylate polymer latex via semi-continuous seeded emulsion technology and carry out comparative study on two different cross-linked monomers.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate (BA) were used as the main monomers, dodecafluoroheptyl methacrylate (DFMA) as the fluoromonomer, hydroxypropyl methacrylate (HPMA) and N-methylol acrylamide (NMA) as cross-linked monomers, and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether (ANPEO10) and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) as compound emulsifiers via the semicontinuous-seeded emulsion polymerization.

Findings

The properties of the polymer emulsions, which are prepared with two different cross-linked monomers, are compared and discussed, and it is concluded that HPMA is more suitable for the preparation of self-crosslinked polymer emulsions. The formula of the polymer latex is ANPEO10: DNS-86 = 1:1, and the mass ratio of the monomers used in the polymer is MMA: BA: DFMA: HPMA = 14.40:14.40:0.60:0.60.

Practical implications

Self-crosslinked long fluorocarbon acrylate polymer latex can be used in many fields such as coatings, dyes, adhesives and other products.

Originality/value

The self-crosslinked long fluorocarbon acrylate polymer latex is prepared by mixing the nonionic emulsifier ANPEO10 and the anionic emulsifier DNS-86 when potassium persulfate is used as the thermal decomposition initiator and the semicontinuous-seeded emulsion technology is adopted and the comparative study on two different cross-linked monomer is carried out, which is not reported in the open literatures.

1 – 7 of 7