Search results

1 – 10 of over 1000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 May 2021

Akinloluwa Samuel Babalola

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic

1004

Abstract

Purpose

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic injection moulds with a view to improving the quality of the outputs. This article determined the appropriate sensors for the measurement of these essential parameters in the most suitable form of representation of the data to aid a proficient analysis of the data.

Design/methodology/approach

The outputs of these sensors were obtained by connecting the sensors to the general-purpose input/output (GPIO) pins of a Raspberry Pi and writing a Python programme for the connected GPIO pins. The values of the outputs of these sensors were represented in a graphical form. The connection of the Raspberry Pi and the sensors were done with a full-sized breadboard and jumper wires. A computer-aided design (CAD) of the connections was produced using Fritzing software.

Findings

The appropriate sensors determined are MLX90614 infrared thermometer sensor, DHT11 humidity sensor, pixy2 vision sensor and Neo-6m GPS sensor. This study proposed that the sensors analytic system be applied on an industrial plastic injection mould to measure and display the various parameters of the injection moulds for the purpose of understanding and improving the performance of the injection mould

Originality/value

An electronic system that provides the continuous values of essential parameters of a plastic injection mould in operation.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 9 October 2017

Darshak Desai and Bhavikkumar Nileshbhai Prajapati

The purpose of this paper is to illustrate the successful application of Six Sigma at a small and medium scale plastic parts manufacturing unit. Overall operational excellence is…

1329

Abstract

Purpose

The purpose of this paper is to illustrate the successful application of Six Sigma at a small and medium scale plastic parts manufacturing unit. Overall operational excellence is one of the foundations of global competiveness. Indian industries are also keeping up with achieving and maintaining operational excellence through different improvement tools and methodologies. Plastic parts manufacturing industries in India are also on the move to increase their overall quality, productivity and profitability. However, it appears from the available literature that application of Six Sigma, one of the most effective breakthrough improvement strategies having direct impact on bottom line of the organization, is not being explored to its full potential, especially at plastic parts manufacturing industries in India. This study was thus undertaken at plastic products manufacturing plant to introduce Six Sigma to them by applying the same to their chronic problems and drawing improvements in quality, productivity and profitability.

Design/methodology/approach

This paper illustrates the real-life case study of improving quality and productivity of injection molding process by phase wiz application of define, measure, analyze, improve and control, the process improvement methodology of Six Sigma.

Findings

The critical defects, such as short molding, contamination, injection point and flash are reduced from the process leading to annual savings of INR 10.80 lacs. This is a considerable amount for a small concern in question.

Research limitations/implications

Because this was the pilot project and the firm was of small and medium size, data collection was the major issue, which consequently took considerable time and efforts at define and measure phases. Injection molding is a very salient process for plastic products manufacturing. Almost one-third of plastic products are made by this process. Thus, improving quality of products made out of injection molding process is of paramount importance. The paper is an attempt to exhibit how a small-scale plastic injection molded parts manufacturing unit can put fruitful efforts to achieve competitive advantage through Six Sigma.

Originality/value

From the review of literature, it appears that application of Six Sigma among plastic parts manufacturing units, especially small and medium, is very rare, not in India but across the globe. This case study has opened up the direction to small- and medium-scale plastic parts manufacturing units to implement Six Sigma and to move a step forward toward achieving competitive advantage.

Details

International Journal of Lean Six Sigma, vol. 8 no. 4
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 29 May 2009

Nagahanumaiah and B. Ravi

The purpose of this paper is to present the results of an investigation into the effect of injection molding process parameters on the performance of direct metal laser sintered…

2740

Abstract

Purpose

The purpose of this paper is to present the results of an investigation into the effect of injection molding process parameters on the performance of direct metal laser sintered (DMLS) mold in producing quality Zytel nylon 66 plastic parts with consistency in part shrinkage and shot/part weight.

Design/methodology/approach

The injection mold for an industrial component (hub gear) was fabricated in EOS M‐250 machine using bronze‐based material. The effect of four injection molding parameters (injection pressure, melt temperature, speed, and injection time) on part shrinkage and weight were studied experimentally using L9 orthogonal array. The weight of the part just after ejecting from the cavity, and the average shrinkage measured after cooling, were used in grey relational analysis technique to assess the effect of each molding parameter. Further, surface properties such as surface finish, wear, scratch and corrosion resistance tests were conducted on DMLS mold material samples, in order to evaluate its use in rapid manufacturing applications.

Findings

The study found that injection speed and melt temperature have significant influence on part weight and shrinkage. The optimized molding process variables were slightly more in the case of DMLS molds as compared with the parameters suggested in the plastic datasheet. Scanning electro microscope (SEM) analysis of the mold surface after producing 5,000 glass filled Nylon 66 (Zytel) moldings did not indicate any surface degradation, confirming the use of DMLS mold in rapid manufacturing of few thousands of moldings.

Research limitations/implications

The grey relational analysis does not compute the effect of any two or more variables together unlike ANNOVA. Second, this study alone is not enough to estimate life of DMLS mold, although 5,000 glass filled nylon 66 moldings are successfully produced without any damage on mold surface.

Practical implications

This investigation demonstrates a generic approach of using grey relational analysis to quantify the effect of different molding process variables on selected quality parameters. This method can be easily extended for new processes and materials. The preliminary tests on surface finish, scratch, wear and corrosion resistance performed on DMLS mold samples have highlighted the need for improving surface properties to enhance their life. The authors are currently working on hard coating of DMLS molds as one of the solutions.

Originality/value

Use of grey relational analysis is new to the problem of injection molding process optimization. Moreover, effect of injection molding parameters on part weight and shrinkage in DMLS mold has not been studied previously. This study helps while considering DMLS molds for manufacturing few thousands of parts.

Details

Rapid Prototyping Journal, vol. 15 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 April 2007

R.V. Nambiar, K.H. Lee and D. Nagarajan

The purpose of this work is to extend the life of plastic injection molds made by stereolithography through the use of gas‐assist technology.

Abstract

Purpose

The purpose of this work is to extend the life of plastic injection molds made by stereolithography through the use of gas‐assist technology.

Design/methodology/approach

Polypropylene parts were made by injection molding in stereolithography molds with and without gas‐assist technology. The mold life was evaluated by observing the number of parts produced before the breakage of each of small core pins and the ejection force was measured.

Findings

When using gas‐assisted injection molding (GAIM), the core pin life was approximately doubled, the average cavity pressure and the average mold temperature were reduced, and there was a three‐fold increase in ejection force. Also, the core pin location had a very dramatic effect on the life.

Research limitations/implications

This study suggests research into understanding the relationship between ejection force and mold failure, testing the mechanical properties of the parts and identifying reliable design rules for parts produced by GAIM. Research into other low pressure injection techniques and the viability of using a wider set of polymer materials also appears promising.

Practical implications

The result of this research encourages molders who have abandoned the use of stereolithography tools after a few unsuccessful attempts to consider using GAIM with stereolithography molds.

Originality/value

This is a novel use of GAIM technology to extend the lives of molds fabricated by stereolithography.

Details

Rapid Prototyping Journal, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2004

Shad Dowlatshahi

Making improvements in products or in processes can be one of the most challenging tasks confronting an organization. This paper uses design of experiment (DOE) to identify causes…

2596

Abstract

Making improvements in products or in processes can be one of the most challenging tasks confronting an organization. This paper uses design of experiment (DOE) to identify causes of defects associated with plastic injection molding processes at the early phases of designing processes and operations. A detailed eight‐phase methodology is offered through which an identification of defects and effective solutions for their removal could be done. The paper also shows how the parameters of the problem could be established and how DOE could be applied to achieve the stated objectives by using the results of only 18 and ten DOE test runs. The results of the initial experiments are subjected to a verification procedure to determine their viability and accuracy. As a result of this experiment, the company was able to make the changes needed to reduce the cycle time required to produce products and thus, increase productivity while maintaining high quality standards. In conclusion, an assessment of the results is provided and the necessary conditions and prerequisites for the effective utilization of the methodology are presented.

Details

Journal of Manufacturing Technology Management, vol. 15 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 16 November 2010

Wu‐Lin Chen, Chin‐Yin Huang and Chi‐Wei Hung

The purpose of this paper is to find the optimal values of process parameters in injection molding when both warpage and shrinkage are minimized.

1024

Abstract

Purpose

The purpose of this paper is to find the optimal values of process parameters in injection molding when both warpage and shrinkage are minimized.

Design/methodology/approach

In finding the optimal values, advantages of finite element software, Moldflow, and dual response surface method (dual RSM) combined with the nonlinear programming technique by Lingo are exploited. Considering the nine process parameters, injection time, injection pressure, packing pressure, packing time, cooling time, coolant temperature, mold‐open time, melting temperature and mold surface temperature, a series of mold analyses are performed to exploit the warpage and shrinkage data. In the analyses, warpage is considered the primary response, whereas shrinkage is the secondary response.

Findings

The results indicate that dual RSM combined with the nonlinear programming technique can outperform the Taguchi's optimization method. The optimal process values are also confirmed by re‐running experiments on Moldflow. Additionally, an auxiliary dual RSM model is proposed to search for a better result based on the given findings by dual RSM at the cost of running extra experiments. Based on dual RSM, a multiple objective optimization for the whole plastic product is finally suggested to integrate the dual RSM models that are developed for the individual nodes or edges.

Originality/value

This paper proposes a new method to find the optimal process for plastic injection molding.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 June 2010

M. Grujicic, V. Sellappan, G. Arakere, J.M. Ochterbeck, Norbert Seyr, Andreas Obieglo, Marc Erdmann and Jochen Holzleitner

The purpose of this paper is to propose and analyse computationally a new concept for mechanical interlocking between metal and plastics. The approach utilizes some of the ideas…

Abstract

Purpose

The purpose of this paper is to propose and analyse computationally a new concept for mechanical interlocking between metal and plastics. The approach utilizes some of the ideas used in the spot‐clinching joining process and is appropriately named “clinch‐lock polymer metal hybrid (PMH) technology.”

Design/methodology/approach

A new approach, the so‐called “direct‐adhesion” PMH technology, is recently proposed Grujicic et al. to help meet the needs of automotive original equipment manufacturers and their suppliers for a cost‐effective, robust, reliable PMH technology which can be used for the manufacturing of load‐bearing body‐in‐white (BIW) components and which is compatible with the current BIW manufacturing‐process chain. Within this approach, the necessary level of polymer‐to‐metal mechanical interconnectivity is attained through direct adhesion and mechanical interlocking.

Findings

In an attempt to fully assess the potential of the clinch‐lock approach for providing the required level of metal/polymer mechanical interlocking, a set of finite‐element based sheet‐metal forming, injection molding and structural mechanics analyses is carried out. The results obtained show that stiffness and buckling resistance levels can be attained which are comparable with those observed in the competing injection over‐molding PMH process but with an ∼3 percent lower weight (of the polymer subcomponent) and without the need for holes and for over‐molding of the free edges of the metal stamping.

Originality/value

The paper presents a useful discussion of clinch‐lock joining technology's potential for fabrication of PMH load‐bearing BIW components.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2006

S.S.S. Imihezri, S.M. Sapuan, S. Sulaiman, M.M. Hamdan and E.S. Zainudin

This paper presents the simulation results of a glass fiber reinforced PA 6,6 composite automotive clutch pedal. The analysis is carried out using Moldflow Plastics Insight (MPI…

Abstract

This paper presents the simulation results of a glass fiber reinforced PA 6,6 composite automotive clutch pedal. The analysis is carried out using Moldflow Plastics Insight (MPI) software to investigate the effects of increasing gate number from 1 to 2 on temperature and pressure. The results of temperature show that for single gate, the temperature was 291.3 °C and for double gate was 292.3 °C. Double gates mold induce higher temperature due to longer runner length. Both designs revealed different hot spots locations indicating probable areas of excess shear heating. The results of pressure (end of fill), for the single gate it was 61.31 MPa and for double gate was 60.73 MPa. Double gates mold reduce the required injection pressure as well as pressure variation, hence a lower volumetric shrinkage. Lower injection pressure produces lower shear rate and shear stress level.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 August 2019

Joel Vasco, F.M. Barreiros, Andreia Nabais and Nilza Reis

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and…

Abstract

Purpose

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and selective laser melting (SLM).

Design/methodology/approach

A systematic methodology is proposed for prior evaluation of the effectiveness of conformal cooling channels to reduce cycle time and/or to reduce the scrap rate.

Findings

The mould was reengineered considering the SLM process and manufactured. Injection trials were carried out to validate expectations provided by injection simulations, which resulted on good quality parts and a significant decrease on cooling time, and, consequently, on the overall cycle time. The minimisation of scrap provided energy savings and time-to-market reduction.

Research limitations/implications

The initial costs for AM tools still pose some doubts on decision-makers. The challenge of this study is to implement the methodology on a small-scale production and still ensure that benefits are achieved.

Practical implications

The case study selected for this research work is based on a parking sensor housing, which is a plastic part assembled on the vehicle’s front and rear bumpers, therefore, with aesthetics concerns. The part produced with the conventional mould exhibits surface defects that, to be minimised (not eliminated), require a longer packing time to diminish the sink marks.

Social implications

The economic impact of the use of SLM is relevant despite the low batch size for the case study presented. Energy savings are achieved due to scrap reduction and shorter cycle time.

Originality/value

The systematic methodology proposed for prior evaluation of the advantages of conformal cooling is possible to be applied both on small scale and high production series.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000