Search results

1 – 10 of 761
Article
Publication date: 13 March 2017

Shiyu Cui, Qiang Miao, Wenping Liang, Yi Xu and Baiqiang Li

The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of…

Abstract

Purpose

The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of the different processes are analyzed individually. The microstructural characteristics of the as-sprayed coatings are presented and the wear mechanisms of the different WC–10Co–4Cr coatings are discussed in detail.

Design/methodology/approach

The WC–10Co–4Cr coatings were formed on the surface of Q235 steel by plasma and HVOF spraying.

Findings

Plasma spraying causes more decarburizing decomposition of the WC phase than HVOF spraying. In the plasma spraying process, η(Cr25Co25W8C2) phase appears and the C content decreases from the top surface of the coating to the substrate.

Practical implications

In this study, two WC–10Co–4Cr coatings on Q235 steel prepared by plasma and HVOF spraying were compared with respect to the sliding wear behavior.

Originality/value

The wear mechanisms of the plasma- and HVOF-sprayed coatings were abrasive and oxidation, respectively.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 March 2019

Tuan Nguyen Van, Tuan Anh Nguyen, Quy Le Thu and Ha Pham Thi

In this work, Cr3C2-25NiCr coatings were deposited on 410 stainless steel substrate by using the atmospheric plasma spray technique, at varying spaying parameters. The porosity…

Abstract

Purpose

In this work, Cr3C2-25NiCr coatings were deposited on 410 stainless steel substrate by using the atmospheric plasma spray technique, at varying spaying parameters. The porosity and microhardness, adhesion strength and corrosion behaviour of coatings were examined in relation to these spraying parameters.

Design/methodology/approach

The microstructure of prepared coatings was examined by using scanning electron microscopy. The coating compositional analysis was performed by using X-ray diffraction (XRD) technique. The corrosion resistance of coated steel was investigated by potentiodynamic polarization. Results indicate that optimal factors for minimalizing the porosity were as follows: 10 g/min feed rate, 600 A plasma current and 100 mm spraying distance. The spraying factors influencing corrosion resistance of coating were also evaluated.

Findings

Under this optimal condition, the porosity of coating reached its minimal value of 3.1 per cent. The microhardness and adhesion of coatings also reached their maximum values of 64.8 Rockwell Hardness scale C and 60 MPa, respectively. XRD results indicated the transformation of Cr3C2 originating from Cr3C2-25NiCr source powder into Cr7C3 and Cr23C6 crystalline phases, due to the high temperature during spraying process. The undetectable Cr3C2 peaks indicating that this phase was remained in coating at very low concentrations. The potentiodynamic polarization and salt spray tests confirmed the highest corrosion resistance for the coating prepared by optimal spraying parameters.

Originality/value

The application of Cr3C2-NiCr cermet carbit coating for protection of steel from corrosion-erosion is very promising.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 2021

Gaurav Prashar and Hitesh Vasudev

In the present study, Al2O3 coatings were deposited on stainless steel AISI-304 material by using atmospheric plasma spraying technique to combat high temperature solid particle…

Abstract

Purpose

In the present study, Al2O3 coatings were deposited on stainless steel AISI-304 material by using atmospheric plasma spraying technique to combat high temperature solid particle erosion. The present aims at the performance analysis of Al2O3 coatings at high temperature conditions.

Design/methodology/approach

The erosion studies were carried out at a temperature of 400°C by using a hot air-jet erosion tester for 30° and 90° impingement angles. The possible erosion mechanisms were analyzed from scanning electron microscope (SEM) micrographs. Surface characterization of the powder and coatings were conducted by using an X-ray diffractometer, SEM, equipped with an energy dispersive X-ray analyzer. The porosity, surface roughness and micro-hardness of the as-sprayed coating were measured. This paper discusses outcomes of the commonly used thermal spray technology, namely, the plasma spray method to provide protection against erosion.

Findings

The plasma spraying method was used to successfully deposit Al2O3 coating onto the AISI 304 substrate material. Detailed microstructural and mechanical investigations were carried out to understand the structure-property correlations. Major findings were summarized as under: the erosive wear test results indicate that the plasma sprayed coating could protect the substrate at both 30° and 90° impact angles. The coating shows better resistance at an impact angle of 30° compared with 90°, which is related to the pinning and shielding effect of the alumina particle. The major erosion wear mechanisms of Al2O3 coating were micro-cutting, micro-ploughing, splat removal and detachment of Al2O3 hard particles.

Originality/value

In the current study, the authors have followed the standard testing method of hot air jet erosion test as per American society for testing of materials G76-02 standard and reported the erosion behavior of the eroded samples. The coating was not removed at all even after the erosion test duration i.e. 10 min. The erosion test was continued till 3 h to understand the evolution of coatings and the same has been explained in the erosion mechanism. The outcome of the present study may be used to minimize the high temperature erosion of AISI-304 substrate.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 November 2022

Chao Han, Li Ma, Bo Jiang Ma, Guosheng Huang and Ying Xiang Ma

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating…

Abstract

Purpose

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating and improving the antiabrasion and anticorrosion performances or not.

Design/methodology/approach

APS was used to deposit and in situ densify FAA coating on the 40Cr substrate. Scanning electron microscope, X-ray diffractometer, energy dispersive spectroscopy, neutral salt spray, hardness and wear behavior test were used to evaluate the densifying effects.

Findings

APS remelting technology can effectively improve the hardness of the coating by reducing the porosity. After remelting at 30 kW power, the hardness of the coating increased by about 260 HV0.2 and the porosity decreased to 2.78%. The amorphous content of the coating is 93.9%, which is about 3.5% lower than original powders. The electrochemical impedance spectrum and neutral salt spray test results show that APS remelting can reduce the corrosion rate by about 62.7%.

Originality/value

APS remelting method is firstly proposed in this work to replace laser remelting or laser cladding methods. APS remelting method can effectively improve the corrosion and abrasion resistance of the FAA coating by increasing the densification with much low recrystallization, which is big progress for application of FAA coatings.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 September 2017

Qingjun Ding, Bo Tian, Gai Zhao, Feng Wang, Huafeng Li and Yunlai Shi

This study systematically investigated the effect of the binary rare earth oxide of La2O3 and Sm2O3 on the properties of the Al2O3/TiO2 (AT) coating, including phase transform…

Abstract

Purpose

This study systematically investigated the effect of the binary rare earth oxide of La2O3 and Sm2O3 on the properties of the Al2O3/TiO2 (AT) coating, including phase transform, wear behavior, etc.

Design/methodology/approach

AT coatings mixed with different components of binary rare earth oxides of La2O3 and Sm2O3 are prepared by atmospheric plasma spraying. The adhesion strength, micro-hardness, phase transition and tribological behavior of coatings are systematically investigated.

Findings

The X-ray diffraction (XRD) analysis shows that phase transformation is obvious after spraying, and a-Al2O3 is almost translated into γ-Al2O3 when La2O3 and Sm2O3 are doped together. Meanwhile, solid solution generated between rare earth oxide and Al2O3/TiO2 coatings results in disappearance of TiO2 and rare earth oxide phase. The photos under the scanning electron microscope (SEM) indicate that binary rare earth oxide could increase the melting degree of powder and decrease porosity of coatings.The increasing of Sm2O3 rarely affect micro-hardness and adhesion strength, and the coating with 4 per cent Sm2O3 and 1 per cent La2O3 exhibits the best wear resistance and lowest friction coefficient among all the samples.

Originality/value

AT coatings mixed with different components of binary rare earth oxide of La2O3 and Sm2O3 are prepared by atmospheric plasma spraying. Binary rare earth oxide could increase the melting degree of powder and decrease porosity of AT coatings.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1968

M.H. Burke

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in…

Abstract

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in simple terms, the various types of plasma systems, equipments and applications for which they can be used.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 November 2006

Ramazan Yilmaz

The aim of this study is to present an experimental research on a Al2O3 · TiO2 plasma coating on AISI 316 stainless steel substrate with and without SiC particulate reinforcement…

1624

Abstract

Purpose

The aim of this study is to present an experimental research on a Al2O3 · TiO2 plasma coating on AISI 316 stainless steel substrate with and without SiC particulate reinforcement to show how SiC particulate effect on the hardness, wear resistance and microstructure of the coating.

Design/methodology/approach

The main objective of the paper is to investigate the effect of SiC particulate on the coating properties such as hardness, wear resistance and microstructure. Achieving of this purpose, harness and sliding test, surface roughness measurements were carried out. In addition to that parallel work on microstructural examination by optical microscope were also conducted. Owing to SiC particulate is harder than Al2O3 · TiO2 plasma coating, it influence hardness and tribological behavior and result in increasing in hardness values and wear resistance of the coating reinforced with SiC particulate compare with unreinforced Al2O3 · TiO2 plasma coating.

Findings

This study provides experimental results about the Al2O3 · TiO2 plasma coating with and without SiCp reinforcement. The obtained experimental results indicate that SiCp in the coating is influence hardness, wear resistance and microstructure of the coating and make them much harder and having wear resistance. This result is consisted with the values obtained previous studies that is available in literature.

Research limitations/implications

SEM or TEM studies may be needed for better understanding of wear mechanism. Various percentage of SiC particulate in the coating can be used in the further researches and provide more detailed information about effecting on SiCp reinforcement of the coating.

Practical implications

The results show that SiCp reinforcement contribute increasing in hardness and wear resistance of the coating. Those compositions of the coating can easily used in related industrial applications.

Originality/value

This paper fulfils some useful information about SiCp Al2O3 · TiO2 plasma coating and offers practical help to students, related academicians and researchers in the industry.

Details

Industrial Lubrication and Tribology, vol. 58 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 October 2018

Sarbjeet Kaushal and Satnam Singh

The purpose of this paper is to study the effect of slurry erosion at different parameters on plasma sprayed Cr3C2 coated 13Cr4Ni turbine steel and compare the results of coated…

Abstract

Purpose

The purpose of this paper is to study the effect of slurry erosion at different parameters on plasma sprayed Cr3C2 coated 13Cr4Ni turbine steel and compare the results of coated steel with bare steel.

Design/methodology/approach

Cr3C2 + 25NiCr coating was successfully developed on 13Cr4Ni turbine steel using plasma spraying method. The slurry erosion test was performed using a simulated erosion testing rig. The commercially available silica sand was used as abrasive media and the effect of concentration (ppm), average particle sizes and rotational speed on the slurry erosion behavior were studied at 300 and 900 impact angles. Developed coatings were characterized by scanning electron microscope, XRD, EDS and micro hardness tests and study of erosion wear.

Findings

Results revealed that three times higher hardness of coatings was obtained because of the hard phases of chromium carbide and nickel carbide, which restricted the abrasive wear in comparison to uncoated steel. Lower abrasive wear was observed at 900 impact angle coupled with lower levels of slurry concentration and rotational speed. Further, it was observed that initially cumulative mass loss rate was high which gets stabilized after the surface become smooth and on exposing for higher periods. Overall results indicated that erosive wear was reduced significantly by the application of developed coating.

Originality/value

The developed plasma sprayed coating is very useful to enhance the service life of turbine steel by lowering the effect of slurry erosion.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 August 2007

J. Landa, I. Illarramendi, N. Kelling, M. Woydt, A. Skopp and M. Hartelt

This paper aims to focus on the potential for substituting molybdenum‐based piston ring coatings, which are recognized as “allrounder” by other candidate metallurgies. Another…

Abstract

Purpose

This paper aims to focus on the potential for substituting molybdenum‐based piston ring coatings, which are recognized as “allrounder” by other candidate metallurgies. Another purpose is the tribological interaction of molybdenum‐based and new triboactive/reactive piston ring coatings with low SAP, polymer‐ and metal‐free as well as bionotox engine oils with high‐viscosity indices.

Design/methodology/approach

Substoichiometric titanium dioxide composed of the Magnéli‐types phases Ti4O7 (∼17 per cent), Ti5O9 (∼66 per cent), Ti6O11 (∼17 per cent) deposited by plasma spraying, a vacuum sprayed TiO1,93 and a plasmasprayed titanium‐molybdenum carbo‐nitride coated piston rings were compared to a state‐of‐the‐art molybdenum‐based piston ring. They were tribologically characterized by means of BAM and SRV tests lubed under mixed/boundary lubrication by factory fill engine oils, engine oils as blends of hydro‐carbons with esters as well as prototype engine oils based on esters and polyglycols.

Findings

Overall, the molybdenum‐ and titanium‐based ring coatings wore in the same order of magnitude. The ranking depends on the test used. The BAM test favours MKP81A (PL72) more, whereas the SRV methods favour the TinO2n−1 more. The different bionotox and low‐ash prototype engine oils with reduced additive contents displayed isoperformance regarding the tribological behaviour of common and triboreactive materials. They presented no visible weakness in wear resistance, coefficient of friction and extreme pressure properties.

Research limitations/implications

The next steps have to confirm functional properties by different engine and endurance tests.

Practical implications

Titanium‐based piston ring coatings are overall more attractive, as they are primarily refined from titania, which is cheap and not rated at stock exchanges, and they present at least an isoperformance when compared with molybdenum‐based ring coatings.

Originality/value

This supplier report displays the complete methodology in order to substitute molybdenum‐ by titanium‐based piston ring coatings as well as illuminating the beneficial interaction with alternative engine oils in existing engine architectures.

Details

Industrial Lubrication and Tribology, vol. 59 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1980

R.H. WEDGE and A.V. EAVES

One of a series of papers presented at a Symposium on the Cost Effectiveness of Sprayed Metal Coatings, organised by the Association of Metal Sprayers.

Abstract

One of a series of papers presented at a Symposium on the Cost Effectiveness of Sprayed Metal Coatings, organised by the Association of Metal Sprayers.

Details

Aircraft Engineering and Aerospace Technology, vol. 52 no. 12
Type: Research Article
ISSN: 0002-2667

1 – 10 of 761