Search results

1 – 10 of 136
Article
Publication date: 1 February 2013

Hakan Aydin, Ali Bayram and Şükrü Topçu

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and…

Abstract

Purpose

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and AISI 420 type martensitic stainless steels.

Design/methodology/approach

Plasma nitriding processes were carried out with DC‐pulsed plasma in 80% N2+20% H2 atmosphere at 450°C and 520°C for 8 h at a pressure of 2 mbar. Salt‐bath nitriding was performed in a cyanide‐cyanate salt‐bath at 570°C for 1.5 h. Gas nitriding was also conducted in NH3 and CO2 atmosphere at 570°C for 13 h. Characterization of all nitrided samples has been carried out by means of microstructure, microhardness, surface roughness measurement and friction coefficient. The morphologies of the worn surfaces of the nitrided samples were also observed using a scanning electron microscope. Friction characteristics of the nitrided samples have been investigated using a ball‐on‐disc friction and wear tester with a WC‐Co ball as the counterface under dry sliding conditions.

Findings

The plasma nitrided and salt‐bath nitrided layers on the 420 steel surfaces were much thicker than on the 304 steel surfaces. However, there was no obvious and homogeneous nitrided layer on the gas nitrided samples' surface. The plasma and salt‐bath nitriding techniques significantly increased the surface hardness of the 304 and 420 samples. The highest surface hardness of the 304 nitrided samples was obtained by the plasma nitrided technique at 520°C. On the other hand, the highest surface hardness of the 420 nitrided layers was observed in the 450°C plasma nitrided layer. Experimental friction test results showed that the salt‐bath and 450°C plasma nitrided layers were more effective in reducing the friction coefficient of the 304 and 420 stainless steels, respectively.

Originality/value

The relatively poor hardness and hence wear resistance of austenitic and martensitic stainless steels needs to be improved. Friction characteristic is a key property of performance for various applications of austenitic and martensitic stainless steels. This work has reported a comparison of friction characteristics of austenitic 304 and martensitic 420 stainless steels, modified using plasma, salt‐bath and gas nitriding processes. The paper is of significances for improving friction characteristics, indirectly wear performances, of austenitic and martensitic stainless steels.

Article
Publication date: 8 February 2016

Sonia Patricia Brühl, Amado Cabo, Walter Tuckart and Germán Prieto

The purpose of this study is to select a proper surface treatment to enhance wear resistance of engine camshafts. The camshaft is a relevant part of a diesel engine which works…

Abstract

Purpose

The purpose of this study is to select a proper surface treatment to enhance wear resistance of engine camshafts. The camshaft is a relevant part of a diesel engine which works under torsion, fatigue and wear efforts. They are usually manufactured by casting, forging or machining from forged bar of low alloy steels, and in most cases, the machined surfaces are quenched and tempered by induction heating. After that, in many cases, to withstand the efforts imposed on the active surfaces and improve tribology and fatigue properties, the industry used for decades, thermochemical technologies such as salt bath or gaseous nitriding and nitrocarburizing processes.

Design/methodology/approach

This paper studied the effects of plasma nitriding and plasma nitrocarburizing, on the tribological behaviour of the steel SAE 1045HM3 proposed to produce camshafts. After the plasma treatments, the change in surface roughness was measured; the modified layers were studied by X-ray techniques and its thickness by optical microscopy. The diffusion zone was evaluated by Vickers microhardness determinations. Tribology tests were performed by pin-on-disc configuration using WC ball as a counterpart.

Findings

Results show that plasma nitrided samples present the best tribological behaviour compared with the nitrocarburized ones; also, the influence of the roughness produced by the thermochemical processes appears to be important.

Practical implications

Although both the plasma treatments have been applied for many years, and also reported separately in the scientific literature, there was no information comparing these two treatments for carbon steels, and also, there is not much about tribology in lubricated conditions of nitrided and nitrocarburized carbon steels. In fact, it is not proved that the porosity of the nitrocarburized layer is beneficial for wear resistance in lubricated conditions. In this paper, it was proved that at least in the tested conditions, it is not.

Originality/value

Gas or plasma nitrocarburizing is usually recommended for this kind of applications, although the modified layer is porous. This paper attempts to prove that nitriding could be better than nitrocarburizing, even with a thinner white layer.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Yasar Totik, Akgun Alsaran, Ayhan Celik and Ihsan Efeoglu

This work aims to investigate the wear behavior of manganese phosphate coating on plasma nitrided AISI 5140 steel.

Abstract

Purpose

This work aims to investigate the wear behavior of manganese phosphate coating on plasma nitrided AISI 5140 steel.

Design/methodology/approach

Prior to manganese phosphate coating, plasma nitriding of substrates was performed at gas mixture of 50 percent H2 and 50 percent N2, for the different treatment parameters. The structural, mechanical and tribological properties of the substrates were determined using hardness test, optical microscope, scanning electron microscopy , X‐ray diffraction and pin‐on‐disk tribotester. The wear behavior of untreated, nitrided and duplex treated substrates was evaluated under dry sliding conditions.

Findings

The results indicated that the duplex treatment improved the wear behavior. It was also observed that manganese phosphating of the nitrided substrates at low temperature (450°C‐2h‐N) resulted in a decrease of the wear rate and yielded a reduction in the friction coefficient by forming a transfer film at the counter face.

Originality/value

This study can be a practical reference and offers insight into the effects of duplex treating on the increase of wear resistance.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 November 2013

Jeremy Cockrem, Tomasz Pawel Dudziak, Nigel Simms, Mikolaj Lukaszewicz and John Oakey

It is well known that alloys, based on iron, were exposed to steam oxidation environment producing thick and non-protective oxide scale. More expensive stainless steels contain…

Abstract

Purpose

It is well known that alloys, based on iron, were exposed to steam oxidation environment producing thick and non-protective oxide scale. More expensive stainless steels contain more Cr and are able to form more protective scales. The purpose of this research was to show ability to employ nitride coating on different alloys (T23, T91, E1250, 347HFG and HR3C) in order to enhance steam oxidation resistance.

Design/methodology/approach

The alloys were exposed to steam oxidation rig. Before the test, furnace was purged by nitrogen in order to remove moisture and oxygen. Di-ionised water was pumped from the reservoir using a peristaltic pump into the furnace. System was kept in the closed circle. To reduce solubility of oxygen, di-ionised water was constantly purged by nitrogen. The total exposure time was 2,000 h at 650°C under 1 bar pressure.

Findings

Due to the research, it was found that plasma nitriding process is detrimental for the protection of high-temperature structured materials; the high concentration and high activity of Cr produced a CrN phase. This phase is not stable in steam environment and underwent oxidation to Cr2O3 and further into volatile phase (CrO2(OH)2). Therefore, austenitic steels (E1250, 347HFG and HR3C) coated with nitride coating deposited by plasma nitriding process suffered similar degradation as the uncoated low Cr ferritic steel.

Research limitations/implications

The main limitation of the research conducted in this study was corrosion resistance of the exposed materials.

Originality/value

To the best of the authors' knowledge, this report is the first of its kind to present nitrided alloys (ferritic and austenitic) exposed in steam oxidation.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 May 2011

Reza Shoja Razavi, Gholam Reza Gordani and H.C. Man

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

1105

Abstract

Purpose

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

Design/methodology/approach

Different kinds of surface nitriding methods of titanium alloys, such as plasma nitriding, ion nitriding, gas and laser nitriding, are introduced. Microstructure changes, such as phase formation and the influence of laser processing parameters in laser nitriding layers of Ti‐6Al‐4V alloys, were investigated using scanning electron microscope, transmission electron microscope, X‐ray photo‐electron spectroscopy, and X‐ray diffraction. Based on investigations presented in the literature, the effect of laser nitriding on the corrosion behavior of Ti‐6Al‐4V alloy was reviewed.

Findings

By regulating the laser processing parameter, the microstructure of the nitrided layer can be controlled to optimize corrosion properties. This layer improves corrosion behavior in most environments, due to the formation of a continuous TiNxOy passive film, which can retard the ingress of corrosive ions into the substrate and can maintain a constant value of a current density. Therefore, the laser gas nitrided specimens have a relatively noble corrosion potential and a very small corrosion current, as compared to untreated specimens.

Originality/value

This paper comprises a critical review, and its collection of references is useful. It summarizes current knowledge in laser surface treatment research.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 29 April 2014

Tomasz Liskiewicz

764

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 3
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 14 February 2020

Yamid Núñez, Marcio Mafra, Rigoberto E. Morales, Paulo César Borges and Giuseppe Pintaude

This study aims to assess the performance of SAF 2205 duplex stainless steel against pure wear, tribo-corrosion, corrosion and the synergism between wear and corrosion. The effect…

Abstract

Purpose

This study aims to assess the performance of SAF 2205 duplex stainless steel against pure wear, tribo-corrosion, corrosion and the synergism between wear and corrosion. The effect of plasma nitriding conducted at low temperature (380°C) on SAF 2205 steel was analyzed.

Design/methodology/approach

Three systems were used for assessing the synergism between wear and corrosion: tribo-corrosion – wear tests conducted using the micro-scale abrasion test, performed under a slurry of alumina particles containing 3.5% NaCl; pure wear – tests conducted using the previous system but isolated in a glovebox with a 99% N2 atmosphere; and cyclic polarization under 3.5% NaCl solution. A hard nitrided layer of 3 µm thickness was characterized using X-ray diffraction, presenting expanded austenite.

Findings

The wear mode after micro-scale abrasion tests changed in the absence of an oxygen atmosphere. During pure wear, a mixed mode was identified (rolling + grooving), with the grooving mode more intense for the untreated steel. For tribo-corrosion tests, only rolling wear was identified. For all cases, the nitrided samples presented less wear. The corrosion results indicated a higher repassivation potential for the nitrided condition.

Practical implications

The synergism was more positive for the nitrided sample than for the untreated one, which can be considered for surface treatments of duplex stainless steels in practical applications.

Originality/value

A detailed description of wear mechanisms showed a significant change in the presence of oxygen atmosphere, a new approach for isolating pure wear.

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 July 2018

Wen-Hsien Kao and Yean-Liang Su

This paper aims to investigate the effects of plasma nitriding and Ti-C:H coating deposition on AISI 316L and to find the best tribological performance of various specimens.

Abstract

Purpose

This paper aims to investigate the effects of plasma nitriding and Ti-C:H coating deposition on AISI 316L and to find the best tribological performance of various specimens.

Design/methodology/approach

An experimental investigation is performed into the effects of plasma nitriding and Ti-C:H sputtering on the tribological properties of AISI 316L biomedical stainless steel. Five samples are prepared, namely, original AISI 316L stainless steel (code: 316L), nitrided 316L (code: N316), 316L and N316 sputtered with Ti-C:H (codes: D316 and DN316, respectively) and polished N316 sputtered with Ti-C:H (DN316s). The microstructure, mechanical properties and coating adhesion strength of the various samples are investigated and compared. The tribological properties of the samples are then evaluated by means of reciprocating wear tests performed in 8.9 Wt.% NaCl solution against three different counterbodies, namely, a 316L ball, Ti6Al4V ball and Si3N4 ball.

Findings

It is shown that plasma nitriding followed by Ti-C:H deposition (DN316s) improves the tribological properties of AISI 316L; the sample provides the best tribological performance of the various specimens and has a wear rate approximately 156 times lower than that of the original 316L substrate.

Originality/value

The results suggest that nitriding followed by polishing and Ti-C:H sputtering provides an effective means of improving the service life of AISI 316L biomedical implants.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1992

T. Bell

There are thought to be great technical and economic benefits potentially available through the application of multiple surface engineering technologies in new market sectors…

Abstract

There are thought to be great technical and economic benefits potentially available through the application of multiple surface engineering technologies in new market sectors. This is illustrated through the combined plasma and PVD treatment of low alloy steel substrates. Unique opportunities exist, through the advent of high energy beam technologies, to liquid phase thermochemically alloy aluminium and titanium materials which can then be combined with plasma or PVD techniques to enhance the performance of engineering components by many orders of magnitude. The most recent work in this field suggests that roller element bearings in titanium alloys will soon be within the bounds of design capability and advances towards the design and manufacture of titanium gears could well be possible in the longer term.

Details

Industrial Lubrication and Tribology, vol. 44 no. 1
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 16 August 2011

Mumin Sahin and Ceyhun Sevil

The aim is to provide detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels.

Abstract

Purpose

The aim is to provide detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels.

Design/methodology/approach

Austenitic‐stainless steel was the material chosen for the present study. Ion nitriding process was applied to fatigue and tensile samples prepared by machining. Process temperature was 550°C and treatment time period 24 and 60 h. Then, tensile, fatigue, notch‐impact, hardness tests were applied and metallographic examinations were performed.

Findings

High temperature and longer treatment by ion nitriding decreased fatigue and tensile strengths together with notch‐impact toughness. Scanning electron microscopy and energy dispersive X‐ray spectroscopy analysis revealed formation of nitrides on the sample surfaces. Surface hardness increased with an increase in process time due to diffusion of nitrogen during ion nitriding.

Research limitations/implications

It would be interesting to search the different temperature and time intervals of the ion nitriding. It could be a good idea if future work could be concentrated on ion nitriding on welded stainless steels.

Practical implications

Surfaces of mechanical parts are exposed to higher stress and abrasive forces compared to inside mechanical parts during the time period that mechanical components carry out their expected functions. When stresses and forces exceed the surface strength limit of the material, cracks begin to form at the material surface leading to abrasion and corrosion. Therefore, surface strength of materials needs to be increased to provide a longer service life. Ion (plasma) nitriding is a possible remedy for surface wear.

Originality/value

The main value of this paper is to contribute and fulfil the detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels that are being studied so far in the literature.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 136