Search results

1 – 10 of 44
Article
Publication date: 27 April 2020

Seungjun Woo, Francisco Yumbla, Chanyong Park, Hyouk Ryeol Choi and Hyungpil Moon

The purpose of this study is to propose a novel plane-based mapping method for legged-robot navigation in a stairway environment.

Abstract

Purpose

The purpose of this study is to propose a novel plane-based mapping method for legged-robot navigation in a stairway environment.

Design/methodology/approach

The approach implemented in this study estimates a plane for each step of a stairway using a weighted average of sensor measurements and predictions. It segments planes from point cloud data via random sample consensus (RANSAC). The prediction uses the regular structure of a stairway. When estimating a plane, the algorithm considers the errors introduced by the distance sensor and RANSAC, in addition to stairstep irregularities, by using covariance matrices. The plane coefficients are managed separately with the data structure suggested in this study. In addition, this data structure allows the algorithm to store the information of each stairstep as a single entity.

Findings

In the case of a stairway environment, the accuracy delivered by the proposed algorithm was higher than those delivered by traditional mapping methods. The hardware experiment verified the accuracy and applicability of the algorithm.

Originality/value

The proposed algorithm provides accurate stairway-environment mapping and detailed specifications of each stairstep. Using this information, a legged robot can navigate and plan its motion in a stairway environment more efficiently.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 November 2018

Jun Ni and Wuxue Ding

Determinative locating and riveting distortions are highly coupled at assembly locale. Recent methods only take every tested or assumed locating errors at the mating surface into…

214

Abstract

Purpose

Determinative locating and riveting distortions are highly coupled at assembly locale. Recent methods only take every tested or assumed locating errors at the mating surface into the process planning for the assemblies in a simple form. However, the growth of part number makes it nearly infeasible to take every locating error at every mating surface into the dimensional precision calculation. This paper aims to provide a solid riveting process planning for the reduction of practical locating-related distortions.

Design/methodology/approach

Large-scale metrology firstly measures the determinative coordinates for the locating-deviated key points. Iterative finite element (FE) analyses then calculate the riveting-related key point distortions from every rivet upsetting directions (UDs) and assembly sequence. These key points on the actual assembly contour and relative FE nodes yield two virtual planes. Virtual plane manipulation adds the riveting distortions into the locating-deviated coordinates. Finally, optimal algorithm integrates the iterative FE analyses with virtual plane manipulation.

Findings

Case studies validate that the virtual plane manipulation coincides with the test well, and the proposed method has good compensation of practical locating distortion.

Research limitations/implications

The optimized rivet UDs may be set in a chaotic distribution, which may complicate the abundant riveting operations and the assembly appearance. Therefore, the use of automatic riveting systems can overcome the operational complexity, and the industrial design of rivet UD distribution will improve the assembly appearance.

Practical implications

The optimized UDs and assembly sequence are for assembly workers or automatic riveting systems.

Originality/value

The proposed method is the first to reduce the determinative locating distortion by a novel and efficient solid riveting process planning in detail, and the solid riveting process designed is conservative and accurate for practice.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 June 2017

Bo Sun, Yadan Zeng, Houde Dai, Junhao Xiao and Jianwei Zhang

This paper aims to present the spherical entropy image (SEI), a novel global descriptor for the scan registration of three-dimensional (3D) point clouds. This paper also…

Abstract

Purpose

This paper aims to present the spherical entropy image (SEI), a novel global descriptor for the scan registration of three-dimensional (3D) point clouds. This paper also introduces a global feature-less scan registration strategy based on SEI. It is advantageous for 3D data processing in the scenarios such as mobile robotics and reverse engineering.

Design/methodology/approach

The descriptor works through representing the scan by a spherical function named SEI, whose properties allow to decompose the six-dimensional transformation into 3D rotation and 3D translation. The 3D rotation is estimated by the generalized convolution theorem based on the spherical Fourier transform of SEI. Then, the translation recovery is determined by phase only matched filtering.

Findings

No explicit features and planar segments should be contained in the input data of the method. The experimental results illustrate the parameter independence, high reliability and efficiency of the novel algorithm in registration of feature-less scans.

Originality/value

A novel global descriptor (SEI) for the scan registration of 3D point clouds is presented. It inherits both descriptive power of signature-based methods and robustness of histogram-based methods. A high reliability and efficiency registration method of scans based on SEI is also demonstrated.

Details

Industrial Robot: An International Journal, vol. 44 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2295

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 July 2018

Zhe Gao, Jun Huang, Xiaofei Yang and Ping An

This paper aims to calibrate the mounted parameters between the LIDAR and the motor in a low-cost 3D LIDAR device. It proposes the model of the aimed 3D LIDAR device and analyzes…

Abstract

Purpose

This paper aims to calibrate the mounted parameters between the LIDAR and the motor in a low-cost 3D LIDAR device. It proposes the model of the aimed 3D LIDAR device and analyzes the influence of all mounted parameters. The study aims to find a way more accurate and simple to calibrate those mounted parameters.

Design/methodology/approach

This method minimizes the coplanarity and area of the plane scanned to estimate the mounted parameters. Within the method, the authors build different cost function for rotation parameters and translation parameters; thus, the parameter estimation problem of 4-degree-of-freedom (DOF) is decoupled into 2-DOF estimation problem, achieving the calibration of these two types of parameters.

Findings

This paper proposes a calibration method for accurately estimating the mounted parameters between a 2D LIDAR and rotating platform, which realizes the estimation of 2-DOF rotation parameters and 2-DOF translation parameters without additional hardware.

Originality/value

Unlike previous plane-based calibration techniques, the main advantage of the proposed method is that the algorithm can estimate the most and more accurate parameters with no more hardware.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 June 2018

Zhijia Dong, Gaoming Jiang, Guoming Huang and Honglian Cong

The virtual display of 3D garment is one of the most important features in a computer-aided garment design system. The purpose of this paper is to present a novel web-based 3D…

Abstract

Purpose

The virtual display of 3D garment is one of the most important features in a computer-aided garment design system. The purpose of this paper is to present a novel web-based 3D virtual display framework for the online design of warp-knitted seamless garment using the latest WebGL and HTML5 technologies.

Design/methodology/approach

Based on the feature-based parametric 3D human body model, the 3D model of skin-tight warp-knitted seamless garment is established using the geometric modeling method. By applying plane parameterization technology, the 3D garment model is then projected into corresponding 2D prototype pattern and a texture-mapping relationship is obtained. Finally, an online 3D virtual display application framework for warp-knitted seamless garment is implemented on modern WebGL-enabled web browsers using the latest WebGL and HTML5 technologies, which allow garment designers to globally access without installing any additional software or plugin.

Findings

Based on the 2D/3D model of warp-knitted seamless garment, an online 3D virtual display application running on modern WebGL-enabled web browser is implemented using the latest Javascript, WebGL and HTML5 technologies, which is proven to be an effective way for building the web-based 3D garment CAD systems.

Originality/value

This paper provides a parametric design method for warp-knitted seamless garment 2D/3D model, and web-based online virtual display of 3D warp-knitted seamless garment is implemented for the first time, which establishes the foundation for the web-based online computer-aided warp-knitted seamless garment design system.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 August 2012

E. Costamagna, P. Di Barba and R. Palka

The purpose of this paper is to describe a twofold methodology for evaluating the force between field excitation system and bulk in a magnetic‐levitation device based on…

Abstract

Purpose

The purpose of this paper is to describe a twofold methodology for evaluating the force between field excitation system and bulk in a magnetic‐levitation device based on high‐temperature‐superconductors (HTS). The paper focuses on two‐dimensional field models for HTS bulks. As far as field analysis is concerned, the finite‐element method in two or three dimensions is used. Alternatively, the conformal mapping approach provides a flexible and accurate calculation tool, useful for the optimization of superconducting bearings.

Design/methodology/approach

Powerful mapping algorithms, developed recently for Schwarz‐Christoffel‐like transformations, have proven successful in analyzing the fields, both in the activation and in the operation condition of superconductor devices.

Findings

Assuming small displacements of the superconductor sample with respect to the excitation magnets, the force‐displacement curve was obtained for operational field cooling via Schwarz‐Christoffel maps.

Originality/value

The specific theory used is the substitution theorem for magnetic fields, along with its capability to take complex geometries into account, making it possible to model devices for real‐life applications. Using only a scalar potential, the procedure proposed for computing fields proves, in the conformally‐mapped plane, the superposition method already introduced in FEM‐based models.

Article
Publication date: 11 March 2014

Suyong Yeon, ChangHyun Jun, Hyunga Choi, Jaehyeon Kang, Youngmok Yun and Nakju Lett Doh

– The authors aim to propose a novel plane extraction algorithm for geometric 3D indoor mapping with range scan data.

Abstract

Purpose

The authors aim to propose a novel plane extraction algorithm for geometric 3D indoor mapping with range scan data.

Design/methodology/approach

The proposed method utilizes a divide-and-conquer step to efficiently handle huge amounts of point clouds not in a whole group, but in forms of separate sub-groups with similar plane parameters. This method adopts robust principal component analysis to enhance estimation accuracy.

Findings

Experimental results verify that the method not only shows enhanced performance in the plane extraction, but also broadens the domain of interest of the plane registration to an information-poor environment (such as simple indoor corridors), while the previous method only adequately works in an information-rich environment (such as a space with many features).

Originality/value

The proposed algorithm has three advantages over the current state-of-the-art method in that it is fast, utilizes more inlier sensor data that does not become contaminated by severe sensor noise and extracts more accurate plane parameters.

Details

Industrial Robot: An International Journal, vol. 41 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 March 2018

Wei Sun, Xiaokai Mu, Qingchao Sun, Zhiyong Sun and Xiaobang Wang

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance…

Abstract

Purpose

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.

Design/methodology/approach

The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.

Findings

The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.

Originality/value

In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 January 2023

Mehdi Namazi, Madjid Tavana, Emran Mohammadi and Ali Bonyadi Naeini

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D…

Abstract

Purpose

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D) plays a vital role in innovation. As technology advances and product life cycles become shorter, firms rely on R&D as a strategy to invigorate innovation. R&D project portfolio selection is a complex and challenging task. Despite the management's efforts to implement the best project portfolio selection practices, many projects continue to fail or miss their target. The problem is that selecting R&D projects requires a deep understanding of strategic vision and technical capabilities. However, many decision-makers lack technological insight or strategic vision. This article aims to provide a method to capitalize on the expertise of R&D professionals to assist managers in making informed and effective decisions. It also provides a framework for aligning the portfolio of R&D projects with the organizational vision and mission.

Design/methodology/approach

This article proposes a new strategic approach for R&D project portfolio selection using efficiency-uncertainty maps.

Findings

The proposed strategy plane helps decision-makers align R&D project portfolios with their strategies to combine a strategic view and numerical analysis in this research. The proposed strategy plane consists of four areas: Exploitation Zone, Challenge Zone, Desperation Zone and Discretion Zone. Mapping the project into this strategic plane would help decision-makers align their project portfolio according to the corporate perspectives.

Originality/value

The new approach combines the efficiency and uncertainty dimensions in portfolio selection into an integrated framework that: (i) provides a complete representation of the stochastic decision-making processes, (ii) models the endogenous uncertainty inherent in the project selection process and (iii) proposes a computationally practical and visually unique solution procedure for classifying desirable and undesirable R&D projects.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 44