Search results

1 – 10 of 139
Open Access
Article
Publication date: 30 July 2021

Lorenzo Fiorineschi, Luca Pugi and Federico Rotini

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the…

Abstract

Purpose

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the stiffness of the structural elements.

Design/methodology/approach

A concept is presented and the related kinematics is described. Then, preliminary embodiment evaluations have been performed in terms of kinematics, force control and load distribution on the main structural elements.

Findings

Thanks to the additional leg, the proposed solution allows a preload that is capable of compensating the backlash of joints. The particular structure with four extendible legs and eight cardan joints ensures the parallelism between the ground and the plate holding the end effector, without any need of additional controls. However, it implies that the legs are not subjected to pure tension–compression stresses.

Research limitations/implications

This work is focused on the conceptual phase of the design process, with only preliminary embodiment analysis that paves the way for subsequent and more detailed design steps. Especially concerning the actual stiffness of the system, comprehensive evaluations could be performed only after the identification of the particular parts/devices used to implement the main functional elements.

Originality/value

To the best of the authors’ knowledge, this is the first research work that comprehensively describes and analyzes the considered kinematics, within a real industrial application context.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 1 July 2022

Ioanna Falagara Sigala, Mikhail Sirenko, Tina Comes and Gyöngyi Kovács

The coronavirus disease (COVID-19) pandemic has emerged as an unprecedented health crisis worldwide and heavily disrupted the healthcare supply chain. This study focuses on…

7079

Abstract

Purpose

The coronavirus disease (COVID-19) pandemic has emerged as an unprecedented health crisis worldwide and heavily disrupted the healthcare supply chain. This study focuses on analysing the different types of disruptions occurring in personal protective equipment (PPE) supply chains during the COVID-19 pandemic and on proposing mitigation strategies that are fit to the global scale and many interdependencies that are characteristic for this pandemic. The authors construct a conceptual system dynamics model (SD) based on the literature and adjusted with the use of empirical data (interviews) to capture the complexity of a global supply chain and identify leverage points (mitigation strategies).

Design/methodology/approach

This research follows a mix-methods approach. First, the authors developed a conceptual framework based on four types of disruptions that usually occur during health emergencies (direct effect, policy, supply chain strategy, and behaviourally induced disruptions). Second, the authors collected and analysed data from interviews with experts in the PPE supply chain. Based on the interviews data, the authors developed a conceptual system dynamics (SD) model that allows to capture the complex and dynamic interplay between the elements of the global supply chain system, by highlighting key feedback loops, delays, and the way the mitigation strategies can impact on them. From this analysis, the authors developed four propositions for supply chain risk management (SCRM) in global health emergencies and four recommendations for the policy and decision makers.

Findings

The SD model highlights that without a combination of mitigation measures, it is impossible to overcome all disruptions. As such, a co-ordinated effort across the different countries and sectors that experience the disruptions is needed. The SD model also shows that there are important feedback loops, by which initial disruptions create delays and shortages that propagate through the supply chain network. If the co-ordinated mitigation measures are not implemented early at the onset of the pandemic, these disruptions will be persistent, creating potential shortages of PPE and other critical equipment at the onset of a pandemic – when they are most urgently needed.

Originality/value

This research enriches the understanding of the disruptions of PPE supply chains on the systems level and proposes mitigation strategies based on empirical data and the existing literature.

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1172

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 24 September 2019

Aboubakar Seddik Bouchikhi

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double…

1096

Abstract

Purpose

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load.

Design/methodology/approach

For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral.

Findings

According to the numerical analysis, all parameters above played an important role in determining the J-integral.

Originality/value

The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 2 May 2022

Yongliang Zhang, Jibei Ma, Xingchong Chen and Yun Wang

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force…

Abstract

Purpose

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.

Design/methodology/approach

Taking a 490 m deck type railway steel truss arch bridge as the background, the dynamic calculation model of the whole bridge was established by SAP2000 software. The seismic response analyses under one-, two- and three-dimension (1D, 2D and 3D) uniform ground motion excitations were carried out.

Findings

For the steel truss arch bridge composed of multiple arch ribs, any single direction ground motion excitation will cause large axial force in the chord of arch rib. The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation. The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation. For the bottom chord of arch rib, the arch foot is the weak part of earthquake resistance, but for the upper chord of arch rib, the arch foot, arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts. The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force, but the normal stress of the upper chord of the arch rib is caused by the axial force, in-plane and out of plane bending moment.

Originality/value

The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.

Open Access
Article
Publication date: 12 May 2020

Barbara Dziurdzia, Maciej Sobolewski, Janusz Mikołajek and Sebastian Wroński

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering…

2469

Abstract

Purpose

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering by using seven low-voiding lead-free solder pastes.

Design/methodology/approach

The solder pastes investigated are of SAC305 type, Innolot type or they are especially formulated by the manufacturers on the base of (SnAgCu) alloys with addition of some alloying elements such as Bi, In, Sb and Ti to provide low-void contents. The SnPb solder paste – OM5100 – was used as a benchmark. The solder paste coverage of LED solder pads was chosen as a measure of void contents in solder joints because of common usage of this parameter in industry practice.

Findings

It was found that the highest coverage and, related to it, the least void contents are in solder joints formed with the pastes LMPA-Q and REL61, which are characterized by the coverage of mean value 93.13% [standard deviation (SD) = 2.72%] and 92.93% (SD = 2.77%), respectively. The void diameters reach the mean value equal to 0.061 mm (SD = 0.044 mm) for LMPA-Q and 0.074 mm (SD = 0.052 mm) for REL61. The results are presented in the form of histograms, plot boxes and X-ray images. Some selected solder joints were observed with 3D computer tomography.

Originality/value

The statistical analyses are carried out on the basis of 2D X-ray images with using Origin software. They enable to compare features of various solder pastes recommended by manufacturers as low voiding. The results might be useful for solder paste manufacturers or electronic manufacturing services.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 8 April 2024

Oussama-Ali Dabaj, Ronan Corin, Jean-Philippe Lecointe, Cristian Demian and Jonathan Blaszkowski

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a…

Abstract

Purpose

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a single-phase magnetic core.

Design/methodology/approach

This paper presents the results of finite-element method (FEM) simulations investigating the impact of mixing two different GOES grades on losses of a single-phase magnetic core. The authors used different models: a 3D model with a highly detailed geometry including both saturation and anisotropy, as well as a simplified 2D model to save computation time. The behavior of the flux distribution in the mixed magnetic core is analyzed. Finally, the results from the numerical simulations are compared with experimental results.

Findings

The specific iron losses of a mixed magnetic core exhibit a nonlinear decrease with respect to the GOES grade with the lowest losses. Analyzing the magnetic core behavior using 2D and 3D FEM shows that the rolling direction of the GOES grades plays a critical role on the nonlinearity variation of the specific losses.

Originality/value

The novelty of this research lies in achieving an optimum trade-off between the manufacturing cost and the core efficiency by combining conventional and high-performance GOES grade in a single-phase magnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 2 March 2023

Sofia Holguin and Olga Kosheleva

Usually, people's interests do not match perfectly. So when several people need to make a joint decision, they need to compromise. The more people one has to coordinate the…

296

Abstract

Purpose

Usually, people's interests do not match perfectly. So when several people need to make a joint decision, they need to compromise. The more people one has to coordinate the decision with, the fewer chances that each person's preferences will be properly taken into account. Therefore, when a large group of people need to make a decision, it is desirable to make sure that this decision can be reached by dividing all the people into small-size groups so that this decision can reach a compromise between the members of each group. The study's objective is to analyze when such a compromise is possible.

Design/methodology/approach

In this paper, the authors use a recent mathematical result about convex sets to analyze this problem and to come up with an optimal size of such groups.

Findings

The authors find the smallest group size for which a joint decision is possible. Specifically, the authors show that in situations where each alternative is characterized by n quantities, it is possible to have a joint decision if the participants are divided into groups of size n -- and, in general, no such decision is possible if the participants are divided into groups of size n -- 1.

Originality/value

The main novelty of this paper is that, first, it formulates the problem, which, to the best of the authors’ knowledge, was never formulated in this way before, and, second, that it provides a solution to this problem.

Details

Asian Journal of Economics and Banking, vol. 7 no. 2
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 139