Search results

1 – 10 of 211
Article
Publication date: 1 February 1997

J.I. Ramos

Asymptotic methods are employed to derive the long wave equations governing the fluid dynamics of thin, time‐dependent, incompressible, vertical, planar liquid sheets at low…

Abstract

Asymptotic methods are employed to derive the long wave equations governing the fluid dynamics of thin, time‐dependent, incompressible, vertical, planar liquid sheets at low Reynolds numbers subjected to London‐van der Waals body forces and gravity. Analytical solutions for steady, viscous sheets in gravitational and zero‐gravity environments are obtained for large surface tension. Numerical studies of planar liquid sheets at low Reynolds numbers with no surface tension indicate that, for plane stagnation flows, the deceleration of the sheet as it approaches the solid wall decreases as the London‐van der Waals forces are increased, the effects of these body forces decrease as the Froude number is increased, and, for Reynolds‐to‐Froude numbers greater than one, the thickening of the sheet as it approaches the solid boundary increases as the Hamaker constant is increased. Numerical experiments of film casting processes with three different flow approximations which account for or neglect inertia and/or the gravitational pull have also been performed and indicate that for high take‐up speeds, a boundary layer is formed at the downstream boundary, the thickness of this layer decreases as the London‐van der Waals forces are increased, and, for Reynold‐to‐Froude numbers larger than one, the leading‐order thickness and axial velocity component are very sensitive to the value of the Hamaker constant.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2002

C.A. Powell, Savage and J.T. Guthrie

A Lagrangian finite element algorithm is described for solving two‐dimensional, time‐dependent free surface fluid flows such as those that occur in industrial printing processes…

Abstract

A Lagrangian finite element algorithm is described for solving two‐dimensional, time‐dependent free surface fluid flows such as those that occur in industrial printing processes. The algorithm is applied using a problem specific structured meshing strategy, implemented with periodic remeshing to control element distortion. The method is benchmarked on the problem of a stretching filament of viscous liquid, which clearly demonstrates the applicability of the approach to flows involving substantial free surface deformation. The model printing problem of the transfer of Newtonian liquid from an upturned trapezoidal trench (3‐D cavity with a large transverse aspect ratio) to a horizontal substrate, which is pulled perpendicularly downwards from the cavity, is solved computationally using the Lagrangian scheme. The idealized 2‐D liquid motion is tracked from start‐up to the point where a thin sheet forms – connecting the liquid remaining in the cavity to a “sessile” drop on the moving substrate. The effect of varying substrate separation speed is briefly discussed and predictions are made for approximate drop volumes and “limiting” domain lengths.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2001

A.A. Tseng and M. Tanaka

Two newly invented deposition techniques for the freeform fabrication of metal and ceramic parts are presented. The first deposition technique studied is one that can deposit…

1075

Abstract

Two newly invented deposition techniques for the freeform fabrication of metal and ceramic parts are presented. The first deposition technique studied is one that can deposit variable sizes of filaments in a controlled manner. The second technique consists of layer deposition using an adjustable planar nozzle to generate layers directly. Laboratory scale apparatus has been built to study the behavior of filament and layer formation of these two techniques. Experiments are conducted in typical operation ranges. Analytical solutions are also developed to parametrically study the effects of changing major operational parameters as well as to provide necessary information for designing the apparatus. All results indicate that the analytical predictions agree very well with the experimental observation. Finally, recommendations on the future development of these two techniques are given.

Details

Rapid Prototyping Journal, vol. 7 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1438

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 May 2021

F Sun, Zhen Pan, Yang Liu, Xiang Li, Haoyu Liu and Wenpeng Li

The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure…

Abstract

Purpose

The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure evolution and the shear strength of Cu3Sn at different bonding times.

Design/methodology/approach

In this paper, a novel structure of Cu/composite solder sheet/Cu was designed. The composite solder sheet was made of microporous copper filled with Sn. The composite joint was bonded by thermo-compression bonding under pressure of 0.6 MPa at 300°C. The microstructure evolution and the growth behavior of Cu3Sn at different bonding times were observed by electron microscope and metallographic microscope. The shear strength of the joint was measured by shear machine.

Findings

At initial bonding stage the copper atoms in the substrate and the copper atoms in the microporous copper dissolved into the liquid Sn. Then the scallop-liked Cu6Sn5 phases formed at the interface of liquid Sn/microporous copper and liquid Sn/Cu substrates. During the liquid Sn changing to Cu6Sn5 phases, Cu3Sn phases formed and grew at the interface of Cu6Sn5/Cu substrates and Cu6Sn5/microporous copper. After that the Cu3Sn phases continued to grow and the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained. The growth rule of Cu3Sn was parabolic growth. The shear strength of the composite joints was about 155 MPa.

Originality/value

This paper presents a novel full Cu3Sn-microporous copper composite joint with high shear strength for high-temperature applications based on transient liquid phase bonding. The microstructure evolution and the growth behavior of Cu3Sn in the composite joints were studied. The shear strength and the fracture mechanism of the composite joints were studied.

Details

Soldering & Surface Mount Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 1961

The surface of a very high speed aircraft is cooled by a liquid, e.g. a fuel, which flows rearwardly there‐over and enters the intake of one or more gas turbine or ram jet engines…

Abstract

The surface of a very high speed aircraft is cooled by a liquid, e.g. a fuel, which flows rearwardly there‐over and enters the intake of one or more gas turbine or ram jet engines where it is burnt to provide thrust. In the aircraft illustrated, the leading edges of the delta wing 1 arc formed by a strip 3 of liquid‐pervious material, e.g. perforated or slotted sheet or sintered metal sheet, the strip forming part of the wall of a duct 4 supplied with fuel through a pipe 6, as illustrated. Further liquid‐pervious strips 7, 8 may be provided above and below the wing to emit additional fuel. As the fuel flows rearwardly it is evaporated in the boundary layer and enters the intakes of gas turbine engines 13 disposed along the wing trailing edges. The intakes extend above and below the wing to an extent greater than the thickness of the boundary layer so that practically all the fuel emitted on the surface is utilized in the engines. The fuselage 2 may be similarly cooled by liquid‐pervious sections 14, 15. In an aircraft with swept‐back or swept‐forward wings, the engines are situated at the wing tips or wing roots where the boundary layer tends to converge so that the fuel emitted on the wing surface enters the engine intakes. A further engine may be mounted on the end of the fuselage to receive the liquid emitted thereon. Thermocouples in the surface of the wing may control the liquid emission. It is stated that fuel evaporating in the aircraft boundary layer, will, by its cooling effect, promote laminar flow.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 25 January 2021

Xu Han, Xiaoyan Li, Peng Yao and Dalong Chen

This study aims to investigate the interfacial microstructures of ultrasonic-assisted solder joints at different soldering times.

Abstract

Purpose

This study aims to investigate the interfacial microstructures of ultrasonic-assisted solder joints at different soldering times.

Design/methodology/approach

Solder joints with different microstructures are obtained by ultrasonic-assisted soldering. To analyze the effect of ultrasounds on Cu6Sn5 growth during the solid–liquid reaction stage, the interconnection heights of solder joints are increased from 30 to 50 μm.

Findings

Scallop-like Cu6Sn5 nucleate and grow along the Cu6Sn5/Cu3Sn interface under the traditional soldering process. By comparison, some Cu6Sn5 are formed at Cu6Sn5/Cu3Sn interface and some Cu6Sn5 are randomly distributed in Sn when ultrasonic-assisted soldering process is used. The reason for the formation of non-interfacial Cu6Sn5 has to do with the shock waves and micro-jets produced by ultrasonic treatment, which leads to separation of some Cu6Sn5 from the interfacial Cu6Sn5 to form non-interfacial Cu6Sn5. The local high pressure generated by the ultrasounds promotes the heterogeneous nucleation and growth of Cu6Sn5. Also, some branch-like Cu3Sn formed at Cu6Sn5/Cu3Sn interface render the interfacial Cu3Sn in ultrasonic-assisted solder joints present a different morphology from the wave-like or planar-like Cu3Sn in conventional soldering joints. Meanwhile, some non-interfacial Cu3Sn are present in non-interfacial Cu6Sn5 due to reaction of Cu atoms in liquid Sn with non-interfacial Cu6Sn5 to form non-interfacial Cu3Sn. Overall, full Cu3Sn solder joints are obtained at ultrasonic times of 60 s.

Originality/value

The obtained microstructure evolutions of ultrasonic-assisted solder joints in this paper are different from those reported in previous studies. Based on these differences, the effects of ultrasounds on the formation of non-interfacial IMCs and growth of interfacial IMCs are systematically analyzed by comparing with the traditional soldering process.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 November 2012

Gerard Cummins and Marc P.Y. Desmulliez

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

8914

Abstract

Purpose

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

Design/methodology/approach

This paper gives a detailed literature survey of research carried out in inkjet printing of conductive materials.

Findings

This article explains the inkjet printing process and the various types of conductive inks. It then examines the various factors that affect the quality of inkjet printed interconnects such as printing parameters, materials and substrate treatments. Methods of characterising both the inkjet printing process and the electrical properties of printed conductive materials are also presented. Finally relevant applications of this technology are described.

Originality/value

Inkjet printing is currently one of the cheapest direct write techniques for manufacturing. The use of this technique in electronic manufacturing, where interconnects and other conductive features are required is an area of increasing relevance to the fields of electronics manufacturing, packaging and assembly. This review paper would therefore be of great value and interest to this community.

Article
Publication date: 1 February 1992

W. Delbare, L. Vandam, J. Vandewege, J. Verbeke and M. Fitzgibbon

The paper describes a new electro‐optical board technology, based on the discrete wiring principle. Isolated copper wires are embedded in the circuit board to realise the…

Abstract

The paper describes a new electro‐optical board technology, based on the discrete wiring principle. Isolated copper wires are embedded in the circuit board to realise the electrical interconnections. Glass optical fibres are embedded to obtain optical interconnections. The technology allows for crossovers and for electrical and optical interconnections on one layer of interconnection. As the technology can be applied on the level of package or multichip module, circuit board and backpanel, it has the ability to offer a complete solution for chip to chip electrical and optical interconnections. The paper will describe the basic manufacturing technology of the boards. The benefits of the technology from a system designer's viewpoint will be addressed. The problem of coupling light in and out of the embedded optical fibres will be discussed and the realisation of a first on‐board optical link via embedded optical fibres will be described.

Details

Circuit World, vol. 18 no. 3
Type: Research Article
ISSN: 0305-6120

1 – 10 of 211