Search results

1 – 10 of over 4000
Article
Publication date: 8 June 2012

Jason Mayes, Vladimir Voikov and Mihir Sen

Simple methods for the steady‐state analysis of a flow network are readily available, but the dynamic behavior of a large‐scale flow network is difficult to study due to the…

Abstract

Purpose

Simple methods for the steady‐state analysis of a flow network are readily available, but the dynamic behavior of a large‐scale flow network is difficult to study due to the complex differential‐algebraic equation system resulting from its modeling. It is the aim of this paper to present two simple methods for the dynamic analysis of large‐scale flow networks and to demonstrate their use by examining the dynamics of a self‐similar branching tree network.

Design/methodology/approach

Two numerical projection methods are proposed for one‐dimensional dynamic analysis of large piping networks. Both are extensions of that suggested by Chorin for the nonlinear differential‐algebraic system resulting from the Navier‐Stokes equations. Each numerical algorithm is discussed and verified for turbulent flow in a nonlinear, self‐similar, branching tree network with constant friction factor for which an exact solution is available.

Findings

The dynamics of this network are calculated for more realistic friction factors and described as system parameters are varied. Self‐excited oscillations due to laminar‐turbulent transition are found for some parameter values and dynamic component behavior is observed in the network which is not observable in components apart from it.

Practical implications

It is shown that the dynamics of a flow network can exhibit unexpected behavior, reinforcing the need for simple methods to perform dynamic analysis.

Originality/value

This paper presents two numerical projection schemes for dynamic analysis of large‐scale flow networks to aid in their study and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Qiuju Ma, Qi Zhang and Jiachen Chen

The purpose of this paper is to study propagation characteristics of methane explosion in the pipe network and analyze the propagation laws of methane explosion wave along the…

Abstract

Purpose

The purpose of this paper is to study propagation characteristics of methane explosion in the pipe network and analyze the propagation laws of methane explosion wave along the elbow pipe and pipe network.

Design/methodology/approach

Numerical simulation using software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, is adopted to simulate the propagation characteristics of methane explosion and the property of flow field in complex structures.

Findings

Due to reflection effects of corners of elbow pipe, the peak overpressures at corner locations in the elbow pipe go about two times higher than that in the straight pipe. In the parallel pipe network, the peak overpressure increases significantly at the intersection point, while the flame speed decreases at the junction. All these indicate that pipe corners and bifurcations could substantially enhance explosion partly which can bring more severe damage at the corner area. The explosion violence is strengthened after flames and blast waves are superimposed, such that equipments and people in these areas need special strengthening protection.

Originality/value

The numerical results presented in this paper may provide some useful guidance for the design of the underground laneway structures and to take protective measures at corners and bifurcations in coal mines.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1995

E.H. Mathews and P.A.J. Köhler

The design of optimum pipe and duct networks with available proceduresis difficult, if not impossible. A more efficient procedure that willautomatically produce the optimum design…

Abstract

The design of optimum pipe and duct networks with available procedures is difficult, if not impossible. A more efficient procedure that will automatically produce the optimum design is required. Such a procedure is presented in this article. The design is formulated as a constrained nonlinear optimization problem. This problem is solved using a unique numerical optimization algorithm. The solution entails the calculation of the cross sectional dimensions of the ducts and pipes so that the life cycle cost of the network is minimized. The topology equations are derived using graph theory thereby allowing complex networks with loops to be designed numerically. A duct network consisting of a fan and 35 duct sections is designed according to certain specifications. Using the proposed procedure optimum designs were obtained within seconds on a 33 MHz 486 micro‐computer. The procedure was further applied to the optimization of a coal pipeline. It is shown that the optimized solution will cost 14% ($8 million) less than the previous design with conventional design techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 April 1993

A.Y. Sangodoyin

Examines pollution risks in Ibadan′s (Nigeria) water distributionsystem. Attributes the observed reduction in water quality tourbanization pressure, age of piping, differences in…

Abstract

Examines pollution risks in Ibadan′s (Nigeria) water distribution system. Attributes the observed reduction in water quality to urbanization pressure, age of piping, differences in pipe materials and distance from the treatment plant. The turbidity of some of the samples indicates the entry of foreign materials into the system and thus health hazards. Suggests some measures to ameliorate the situation.

Details

Environmental Management and Health, vol. 4 no. 4
Type: Research Article
ISSN: 0956-6163

Keywords

Book part
Publication date: 31 December 2010

The following is an introductory profile of the fastest growing firms over the three-year period of the study listed by corporate reputation ranking order. The business activities…

Abstract

The following is an introductory profile of the fastest growing firms over the three-year period of the study listed by corporate reputation ranking order. The business activities in which the firms are engaged are outlined to provide background information for the reader.

Details

Reputation Building, Website Disclosure and the Case of Intellectual Capital
Type: Book
ISBN: 978-0-85724-506-9

Article
Publication date: 1 February 1988

Arturo O. Cifuentes

A problem that arises very frequently in many industrial applications is the study of steady incompressible flows in a network of pipes. This paper introduces a structural analogy…

Abstract

A problem that arises very frequently in many industrial applications is the study of steady incompressible flows in a network of pipes. This paper introduces a structural analogy that allows the problem to be treated with a certain class of non‐linear finite elements. The advantage of this formulation is that it falls within the range of capabilities offered by most structural analysis codes available in the market.

Details

Engineering Computations, vol. 5 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 20 October 2021

R. Silambarasan, A.R. Veerappan and S. Shanmugam

The purpose of this paper is to quantify the combined effect of shape distortion and bend angle on the collapse loads of pipe bends exposed to internal pressure and in-plane…

108

Abstract

Purpose

The purpose of this paper is to quantify the combined effect of shape distortion and bend angle on the collapse loads of pipe bends exposed to internal pressure and in-plane closing bending moment. Non-linear finite element analysis with large displacement theory was performed considering the pipe bend material to be elastic perfectly plastic.

Design/methodology/approach

One half of the pipe bend model was built in ABAQUS. Shape distortion, namely, ovality (Co) and thinning (Ct), were each varied from 0% to 20% in steps of 5% and bend angle was varied from 30° to 180° in steps of 30°.

Findings

The findings show that ovality has a significant impact on collapse load. The effect of ovality decreases with an increase in bend angle for small thickness. The opposite effect was observed for large thickness pipe bends. The influence of ovality was more for higher bend angles. Ovality impact was almost negligible at certain internal pressure denoted as nullifying point (NP). The latter increased with an increase in pipe bend thickness and decreased with increase in pipe bend radius. For small bend angles one NP was observed where ovality impact is negligible and beyond this point the ovality effect increased. Two NPs were observed for large bend angles and ovality effect was maximum between the two NPs. Thinning yielded a minimal effect on collapse load except for small bend angles and bend radii. The influence of internal pressure on thinning was also negligible.

Originality/value

Influence of shape distortions and bend angle on collapse load of pipe bend exposed to internal pressure and in-plane closing bending has been not revealed in existing literature.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 August 2001

69

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 June 2001

59

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 4000