Search results
1 – 3 of 3Jacek Pieniazek and Piotr Ciecinski
This study aims to optionally-piloted aircraft is useful for in-flight tests of new automatic controller’s concepts. The safety of this kind of experiment is an issue addressed in…
Abstract
Purpose
This study aims to optionally-piloted aircraft is useful for in-flight tests of new automatic controller’s concepts. The safety of this kind of experiment is an issue addressed in this paper. The prediction of possible safety-influencing factors makes it possible to assess the pilot’s ability to effectively prevent safety risks.
Design/methodology/approach
The analysis in this research paper focusses on two cases of monitoring; similar control standards for both pilot in command and the monitoring pilot or technical systems in one of these tasks and dissimilar control standard when monitoring pilot is not familiar with a control manner of the pilot in command or of the automatic control system. The increased workload is expected in the last case as the result of additional activities determined theoretically in the presented analysis. Details of the possible threats are obtained by simulation tests with various factors influencing the safety of landing. In addition to determining threats, the analysis includes the possibility of in time threat detection and preserving action.
Findings
The results show that the safety pilot has a different task than the pilot in command and needs to be familiar with the general principles of automatic controller operations and the particular algorithm being tested. Although commonly used landing procedure is relatively error-tolerant, new landing procedures for use in some specific conditions need more precise control and additional safety pilot preparation. Additional information presented to both the pilot in command and the safety pilot may increase mode and state awareness and reduce reaction time in an emergency condition.
Practical implications
In-flight tests of non-standard control algorithms there is a need to include additional preparation of the equipment and safety pilot. The research in this paper illustrates how to determine threats and safety-critical moments during the experimental flight can be observed. The danger is mitigated by the safety pilot, if familiar with both proper and improper operations of the controller and how the pilot in command should detect and predict danger caused by the tested control system.
Originality/value
The presented method of analysis combines the human factor with various technical aspects. The results obtained illustrate the real tasks of the person supervising the operation of the automatic control system and the role of a human as a safety pilot.
Details
Keywords
Mariusz Oszust, Tomasz Kapuscinski, Dawid Warchol, Marian Wysocki, Tomasz Rogalski, Jacek Pieniazek, Grzegorz Henryk Kopecki, Piotr Ciecinski and Pawel Rzucidlo
This paper aims to present a vision-based method for determination of the position of a fixed-wing aircraft that is approaching a runway.
Abstract
Purpose
This paper aims to present a vision-based method for determination of the position of a fixed-wing aircraft that is approaching a runway.
Design methodology/approach
The method determines the location of an aircraft based on positions of precision approach path indicator lights and approach light system with sequenced flashing lights in the image captured by an on-board camera.
Findings
As the relation of the lighting systems to the touchdown area on the considered runway is known in advance, the detected lights, seen as glowing lines or highlighted areas, in the image can be mapped onto the real-world coordinates and then used to estimate the position of the aircraft. Furthermore, the colours of lights are detected and can be used as auxiliary information.
Practical implications
The presented method can be considered as a potential source of flight data for autonomous approach and for augmentation of manual approach.
Originality/value
In this paper, a feasibility study of this concept is presented and primarily validated.
Details
Keywords
Paweł Rzucidło, Tomasz Rogalski, Grzegorz Jaromi, Damian Kordos, Piotr Szczerba and Andrzej Paw
The purpose of this paper is to describe simulation research carried out for the needs of multi-sensor anti-collision system for light aircraft and unmanned aerial vehicles.
Abstract
Purpose
The purpose of this paper is to describe simulation research carried out for the needs of multi-sensor anti-collision system for light aircraft and unmanned aerial vehicles.
Design/methodology/approach
This paper presents an analysis related to the practical possibilities of detecting intruders in the air space with the use of optoelectronic sensors. The theoretical part determines the influence of the angle of view, distance from the intruder and the resolution of the camera on the ability to detect objects with different linear dimensions. It has been assumed that the detection will be effective for objects represented by at least four pixels (arranged in a line) on the sensor matrix. In the main part devoted to simulation studies, the theoretical data was compared to the obtained intruders’ images. The verified simulation environment was then applied to the image processing algorithms developed for the anti-collision system.
Findings
A simulation environment was obtained enabling reliable tests of the anti-collision system using optoelectronic sensors.
Practical implications
The integration of unmanned aircraft operations in civil airspace is a serious problem on a global scale. Equipping aircraft with autonomous anti-collision systems can help solve key problems. The use of simulation techniques in the process of testing anti-collision systems allows the implementation of test scenarios that may be burdened with too much risk in real flights.
Social implications
This paper aims for possible improvement of safety in light-sport aviation.
Originality/value
This paper conducts verification of classic flight simulator software suitability for carrying out anti-collision systems tests and development of a flight simulator platform dedicated to such tests.
Details