Search results

1 – 10 of 25
Article
Publication date: 18 October 2022

Vipin Gupta, Rajesh Kumar, Manjeet Kumar, Vijayata Pathania and M.S. Barak

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Abstract

Purpose

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Design/methodology/approach

This investigation studied the reflection and transmission of plane waves on an interface of nonlocal orthotropic piezothermoelastic space (NOPHS) and fluid half-space (FHS) in reference to dual-phase-lag theory under three different temperature models, namely, without-two-temperature, classical-two-temperature, and hyperbolic-two-temperature with memory-dependent derivatives (MDDs).

Findings

The primary (P) plane waves propagate through FHS and strike at the interface x3 = 0. The results are one wave reflected in FHS and four waves transmitted in NOPHS. It is noticed that these ratios are observed under the impact of nonlocal, dual-phase-lag (DPL), two-temperature and memory-dependent parameters and are displayed graphically. Some particular cases are also deduced, and the law of conservation of energy across the interface is justified.

Research limitations/implications

According to the available literature, there is no substantial research on the considered model incorporating NOPHS and FHS with hyperbolic two-temperature, DPL and memory.

Practical implications

The current model may be used in various fields, including earthquake engineering, nuclear reactors, high particle accelerators, aeronautics, soil dynamics and so on, where MDDs and conductive temperature play a significant role. Wave propagation in a fluid-piezothermoelastic media with different characteristics such as initial stress, magnetic field, porosity, temperature, etc., provides crucial information about the presence of new and modified waves, which is helpful in a variety of technical and geophysical situations. Experimental seismologists, new material designers and researchers may find this model valuable in revising earthquake estimates.

Social implications

The researchers may classify the material using the two-temperature parameter and the time-delay operator, where the parameter is a new indication of its capacity to transmit heat in interaction with various materials.

Originality/value

The submitted manuscript is original work done by the team of said authors and each author contributed equally to preparing this manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2016

Rajneesh Kumar and Poonam Sharma

– The purpose of this paper is to study the propagation of harmonic plane waves in a homogeneous anisotropic piezothermoelastic diffusive medium.

Abstract

Purpose

The purpose of this paper is to study the propagation of harmonic plane waves in a homogeneous anisotropic piezothermoelastic diffusive medium.

Design/methodology/approach

After developing the mathematical model and theoretical analysis of the problem, computational work has been performed to study the different characteristics of the plane harmonic waves.

Findings

The existence of waves namely, quasi-longitudinal wave (QP), quasi-thermal wave and quasi-mass diffusion wave have been found which propagates in an anisotropic piezothermoelastic diffusive medium. The different characteristics of waves like phase velocity and attenuation quality factor are computed numerically and presented graphically to show the piezoelectric effect.

Originality/value

A significant piezoelectric effects have been observed on the different characteristics of the waves in an anisotropic piezothermoelastic diffusive medium.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 August 2015

Rajendran Selvamani and Palaniyandi Ponnusamy

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in a generalized piezothermelastic rotating bar of circular cross-section by using Lord-Shulman (LS) and Green-Lindsay (GL) theory of thermoelasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the thermally insulated/isothermal and electrically shorted/charge free boundary conditions prevailing at the surface of the circular cross-sectional bar. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

In order to include the time requirement for the acceleration of the heat flow and the coupling between the temperature and strain fields, the analytical terms have been derived for the non-classical thermo-elastic theories, LS and GL theory. The computed physical quantities such as thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency have been presented in the form of dispersion curves. From the graphical patterns of the structure, the effect of thermal relaxation times and the rotational speed as well as the anisotropy of the of the material on the various considered wave characteristics is more significant and dominant in the flexural modes of vibration. The effect of such physical quantities provides the foundation for the construction of temperature sensors, acoustic sensor and rotating gyroscope.

Originality/value

In this paper, the influence of thermal relaxation times and rotational speed on the wave number with thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency has been observed and are presented as dispersion curves. The effect of thermal relaxation time and rotational speed on wave number for the case of generalized piezothermoelastic material of circular cross-section was never reported in the literature. These results are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 March 2023

M.S. Barak, Rajesh Kumar, Rajneesh Kumar and Vipin Gupta

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Abstract

Purpose

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Design/methodology/approach

The dual-phase lag (DPL) theory with memory-dependent derivatives is employed to study the variation of energy ratios at the imperfect interface.

Findings

A plane longitudinal wave (P) or transversal wave (SV) propagates through EHS and strikes at the interface. As a result, two waves are reflected, and four waves are transmitted, as shown in Figure 2. The amplitude ratios are determined by imperfect boundaries having normal stiffness and transverse stiffness. The variation of energy ratios is computed numerically for a particular model of graphite (EHS)/cadmium selenide (OPHS) and depicted graphically against the angle of incidence to consider the effect of stiffness parameters, memory and kernel functions.

Research limitations/implications

The energy distribution of incident P or SV waves among various reflected and transmitted waves, as well as the interaction of waves for imperfect interface (IIF), normal stiffness interface (NSIF), transverse stiffness interface (TSIF), and welded contact interface (WCIF), are important factors to consider when studying seismic wave behavior.

Practical implications

The present model may be used in various disciplines, such as high-energy particle physics, earthquake engineering, nuclear fusion, aeronautics, soil dynamics and other areas where memory-dependent derivative and phase delays are significant.

Originality/value

In a variety of technical and geophysical scenarios, wave propagation in an elastic/piezothermoelastic medium with varying magnetic fields, initial stress, temperature, porosity, etc., gives important information regarding the presence of new and modified waves.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 February 2023

Vipin Gupta, Rajesh Kumar, Rajneesh Kumar and M.S. Barak

This paper aims to study the energy ratios of plane waves on an interface of nonlocal thermoelastic halfspace (NTS) and nonlocal orthotropic piezothermoelastic half-space (NOPS).

Abstract

Purpose

This paper aims to study the energy ratios of plane waves on an interface of nonlocal thermoelastic halfspace (NTS) and nonlocal orthotropic piezothermoelastic half-space (NOPS).

Design/methodology/approach

The memory-dependent derivatives (MDDs) approach with a hyperbolic two-temperature (HTT), three-phase lag theory is used here to study how the energy ratios change at the interface with the angle of incidence.

Findings

Plane waves that travel through NTS and hit the interface as a longitudinal wave, a thermal wave, or a transversal wave send four waves into the NOPS medium and three waves back into the NTS medium. The amplitude ratios of the different waves that are reflected and transmitted are used to calculate the energy ratios of the waves. It is observed that these ratios are affected by the HTT, nonlocal and MDD parameters.

Research limitations/implications

The energy ratios correspond to four distinct models; nonlocal HTT with memory, nonlocal HTT without memory, local HTT with memory and nonlocal classical-two-temperature with memory concerning the angle of incidence from 0 degree to 90 degree.

Practical implications

This model applies to several fields, including earthquake engineering, soil dynamics, high-energy particle physics, nuclear fusion, aeronautics and other fields where nonlocality, MDD and conductive temperature play an important role.

Originality/value

The authors produced the submitted document entirely on their initiative, with equal contributions from all of them.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2023

Anand Kumar Yadav, M.S. Barak and Vipin Gupta

This paper aims to study the impact of pyro-electricity, moisture and temperature diffusivity on the energy distribution of plane waves at the free surface of an orthotropic…

Abstract

Purpose

This paper aims to study the impact of pyro-electricity, moisture and temperature diffusivity on the energy distribution of plane waves at the free surface of an orthotropic piezo-hygro-thermo-elastic medium.

Design/methodology/approach

This study presents the novel creation of governing equations for an anisotropic piezothermoelastic medium with moisture impact, which is a significant contribution of this paper.

Findings

In addition to providing numerical data for the amplitude ratios and energy ratios of reflected waves, this study identifies five different kinds of coupled reflected plane waves, namely, quasi-longitudinal P wave, quasi-thermal wave, quasi-transverse wave, quasi-moisture wave and electric potential wave.

Research limitations/implications

The graphical analysis examines the impact of various factors, such as the angle of incidence, moisture and temperature diffusivity, pyro-electricity and frequency, on energy distribution.

Practical implications

This paper's results significantly impact the development of more efficient piezoelectric materials and their applications in geophysics.

Originality/value

The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2018

Rajendran Selvamani

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid…

Abstract

Purpose

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid using the Fourier expansion collocation method.

Design/methodology/approach

A mathematical model is developed for the analytical study on a transversely isotropic thermo-piezoelectric polygonal cross-sectional fiber immersed in fluid using a linear form of three-dimensional piezothermoelasticity theories. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the Fourier expansion collocation method (FECM) at the irregular boundary surfaces of the polygonal cross-sectional fiber. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is evident that the analytical formulation of thermo-piezoelectric interactions in a polygonal cross-sectional fiber contact with fluid is not discussed by any researchers. Also, in this study, a polygonal cross-section is used instead of the traditional circular cross-sections. So, the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid are studied using the FECM. The dispersion curves for non-dimensional frequency, phase velocity and attenuation coefficient are presented graphically for lead zirconate titanate (PZT-5A) material. The present analytical method obtained by the FECM is compared with the finite element method which shows a good agreement with present study.

Originality/value

This paper contributes the analytical model to find the solution of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid. The dispersion curves of the non-dimensional frequency, phase velocity and attenuation coefficient are more prominent in flexural modes. Also, the surrounding fluid on the various considered wave characteristics is more significant and dispersive in the hexagonal cross-sections. The aspect ratio (a/b) of polygonal cross-sections is critical to industry or other fields which require more flexibility in design of materials with arbitrary cross-sections.

Article
Publication date: 25 May 2023

Manjeet Kumar, Jai Bhagwan, Pradeep Kaswan, Xu Liu and Manjeet Kumari

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Abstract

Purpose

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Design/methodology/approach

To derive the theoretical formulas for elastic wave propagation velocities through the potential decomposition of wave-governing equations. The boundary conditions have been designed to incorporate the unique characteristics of the surface pores, whether they are open or sealed. This approach provides a more accurate and realistic mathematical interpretation of the situation that would be encountered in the field. The reflection coefficients are obtained through a linear system of equations, which is solved using the Gauss elimination method.

Findings

The solutions obtained from the governing equations reveal the presence of five inhomogeneous plane waves, consisting of four coupled longitudinal waves and a single transverse wave. The energy ratios of reflected waves are determined for both open and sealed pores on the stress-free, the thermally insulated surface of DP thermoelastic medium. In addition, the energy ratios are compared for the cases of a DP medium and a DP thermoelastic medium.

Originality/value

A numerical example is considered to investigate the effect of fluid type in inclusions, temperature and inhomogeneity on phase velocities and attenuation coefficients as a function of frequency. Finally, a sensitivity analysis is performed graphically to observe the effect of the various parameters on propagation characteristics, such as propagation/attenuation directions, phase shifts and energy ratios as a function of incident direction in double-porosity thermoelasticity medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Vipin Gupta and M.S. Barak

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties…

Abstract

Purpose

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties. Specifically, the research focuses on analyzing the behavior of the semiconductor under three distinct temperature models.

Design/methodology/approach

The study assumes a homogeneous and orthotropic piezo-semiconductor medium during photo-thermal excitation. The field equations have been devised to encompass higher order parameters, temporal delays and a specifically tailored kernel function to address the problem. The eigenmode technique is used to solve these equations and derive analytical expressions.

Findings

The research presents graphical representations of the physical field distribution across different temperatures, higher order plasma heat conduction models and time. The results reveal that the amplitude of the distribution profile is markedly affected by factors such as the memory effect, time, conductive temperature and spatial coordinates. These factors cannot be overlooked in the analysis and design of the semiconductor.

Research limitations/implications

Specific cases are also discussed in detail, offering the potential to advance the creation of precise models and facilitate future simulations.

Practical implications

The research offers valuable information on the physical field distribution across various temperatures, allowing engineers and designers to optimize the design of semiconductor devices. Understanding the impact of memory effect, time, conductive temperature and spatial coordinates enables device performance and efficiency improvement.

Originality/value

This manuscript is the result of the joint efforts of the authors, who independently initiated and contributed equally to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2007

A. Kumaravel, N. Ganesan and Raju Sethuraman

The paper deals with the investigation of linear buckling and free vibration behavior of layered and multiphase magneto‐electro‐elastic (MEE) beam under thermal environment. The…

Abstract

The paper deals with the investigation of linear buckling and free vibration behavior of layered and multiphase magneto‐electro‐elastic (MEE) beam under thermal environment. The constitutive equations of magneto‐electro‐elastic materials are used to derive finite element equations involving the coupling between mechanical, electrical and magnetic fields. The finite element model has been verified with the commercial finite element package ANSYS. The influence of magneto electric coupling on critical buckling temperature is investigated between layered and multiphase magneto‐electro‐elastic beam. Furthermore, the influence of temperature rise on natural frequencies of magneto‐electro‐elastic beam with layered and different volume fraction is presented.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 25