Search results

1 – 10 of 73
Article
Publication date: 16 September 2022

Chenyang Mao, Bo Zhou and Shifeng Xue

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on…

Abstract

Purpose

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on the piezoelectric material plate structures is not enough; however, such structures play a very important role in the practical design. In this paper, the actuation performance of piezoelectric laminated plate actuator (PLPA) is analyzed based on Galerkin method to parametric study the shape control.

Design/methodology/approach

In this paper, the actuation performance of PLPA is analyzed based on Galerkin method to parametric study the shape control. The stress components of the matrix plate are formulated based on electro-mechanical coupling theory and Kirchhoff's classical laminated plate theory. The effectiveness of the developed method is validated by the comparison with finite element method.

Findings

The actuation performance of PLPA and its influencing factors are numerically analyzed through the developed method. The deflection of PLPA is reasonably increased by optimizing the electric fields, the piezoelectric patch and the matrix plate.

Originality/value

The Galerkin method can be used for engineering applications more easily, and it does not require to rebuild the calculation model as finite element method during the calculation and analysis of PLPA. This paper is a valuable reference for the design and analysis of PLPAs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 June 2023

Mehdi Ranjbar-Roeintan

This article focuses on the low-velocity impact (LVI) output of carbon nanotubes (CNTs)’ reinforcement circular plates, considering agglomeration size effect and clumping of CNTs’…

Abstract

Purpose

This article focuses on the low-velocity impact (LVI) output of carbon nanotubes (CNTs)’ reinforcement circular plates, considering agglomeration size effect and clumping of CNTs’ inner side of the agglomerations.

Design/methodology/approach

A representative volume element (RVE) is used to determine the nanocomposite properties reinforced with agglomerated CNTs with random orientation. First-order shear deformation theory (FSDT) is used to obtain the motion equations of LVI analysis. These equations are handled by developing a Ritz method and Lagrangian mechanics. To extract the mass and stiffness matrices, terms with second and higher degrees are ignored.

Findings

Formulation validation is performed by providing various examples, including comparisons with other research and ABAQUS FE code. The effects of agglomeration size, clumping of CNTs’ inner side of the agglomerations, CNT volume fraction and impact location on the responses of impact load, projectile displacement and plate deflection are analytically studied. These achievements illuminate how the influence of agglomeration size is very small on the impact response. Also, the influence of clumping of CNTs’ inner side of the agglomerations is significant, and as it increases, the displacement values and impact time increase, and the impact force decreases.

Originality/value

In this article, to avoid additional calculations, the parameters of the mass matrix and the stiffness coefficients are linearized to obtain the equations of motion of the impact on the circular plate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 July 2009

Haydar Uyanık and Zahit Mecitoğlu

The purpose of this paper is to develop a structural vibration control system by using a state observer which estimates system states using displacements measured from sensors.

Abstract

Purpose

The purpose of this paper is to develop a structural vibration control system by using a state observer which estimates system states using displacements measured from sensors.

Design/methodology/approach

Friedlander's exponential decay function is used for expressing the blast load model. A semiloof shell element is developed in order to account for piezoelectric effects. The composite plate is discretized by using the semiloof shell elements, and stiffness and mass matrices of the plate are obtained from the finite element model. In order to reduce the degrees of freedom of the finite element model, mode summation method is used with weighted modal vector including initial dominant modes in the dynamic behavior.

Findings

The structural vibrations are suppressed successfully and in an optimal way by using a state observer control system which estimates system states using displacements measured from sensors.

Originality/value

This paper shows, for the first time, that vibrations of a cantilevered composite plate subjected to blast loading are suppressed by the use of piezoelectric actuators. The state observer and optimal linear quadratic regulator are both used at the same time to suppress the vibrations.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 22 July 2019

Achchhe Lal and Khushbu Jain

The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite…

Abstract

Purpose

The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite plate (PLCP) using displacement correlation method.

Design/methodology/approach

In the present work, the governing equations are solved through conventional finite element method combined with higher order shear deformation plate theory utilizing the micromechanical approach.

Findings

The effects of crack length, the thickness of the plate and piezoelectric layer, stacking sequences, fiber volume fraction, position of piezoelectric layer, change in moisture and temperature, and voltage on the NSIF are examined. The numerical results are presented in the form of a table for the better understanding and accuracy. The present outlined approach is validated with results available in the literature. These results can become a benchmark for future studies.

Research limitations/implications

The mathematical models theoretically have been developed by considering different parameters. The results are generated using MATLAB 2015 software developed by the authors’ side.

Originality/value

The fracture analysis of a single edge crack PLCP with the effect of a piezoelectric layer at the different location of cracked structures, plate thickness, and actuator voltage and hygro-thermo loading is the novelty of research for health monitoring and high-performance analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2603

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6039

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 February 2020

Namita Nanda

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart…

Abstract

Purpose

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart laminated composite beams with embedded delamination. For generating and sensing high-frequency elastic waves in composite beams, piezoelectric materials such as lead zirconate titanate (PZT) are used because they can act as both actuators and sensors. The present model is used to investigate the effects of parametric variation of delamination configuration on the propagation of fundamental anti-symmetric wave mode in piezoelectric composite beams.

Design/methodology/approach

The spectral element is derived from the exact solution of the governing equation of motion in frequency domain, obtained through fast Fourier transformation of the time domain equation. The beam is divided into two sublaminates (delamination region) and two base laminates (integral regions). The delamination region is modeled by assuming constant and continuous cross-sectional rotation at the interfaces between the base laminate and sublaminates. The governing differential equation of motion for delaminated composite beam with piezoelectric lamina is obtained using Hamilton’s principle by introducing an electrical potential function.

Findings

A detailed study of the wave response at the sensor shows that the A0 mode can be used for delamination detection in a wide region and is more suitable for detecting small delamination. It is observed that the amplitude and time of arrival of the reflected A0 wave from a delamination are strongly dependent on the size, position of the delamination and the stacking sequence. The degraded material properties because of the loss of stiffness and density in damaged area differently alter the S0 and A0 wave response and the group speed. The present method provides a potential technique for researchers to accurately model delaminations in piezoelectric composite beam structures. The delamination position can be identified if the time of flight of a reflected wave from delamination and the wave propagation speed of A0 (or S0) mode is known.

Originality/value

Spectral finite element modeling of delaminated composite beams with piezoelectric layers has not been reported in the literature yet. The spectral element developed is validated by comparing the present results with those available in the literature. The spectral element developed is then used to investigate the wave propagation characteristics and interaction with delamination in the piezoelectric composite beam.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1114

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 June 2010

E. Carrera and A. Robaldo

The purpose of this paper is to present several two‐dimensional plate elements for the analysis of shear actuated laminate.

Abstract

Purpose

The purpose of this paper is to present several two‐dimensional plate elements for the analysis of shear actuated laminate.

Design/methodology/approach

The limitations of the classical formulations based on the principle of virtual displacements in depicting the peculiar behavior of the transverse and normal stresses of multilayered structures have been easily overcome by using the mixed variational theorem proposed by Reissner (Reissner mixed variational theorem). In the framework of a unified formulation (UF), the assumptions of the unknowns is made through a common expansion leading both to global and layerwise description of the assumed unknowns. In addition, the possibility to choose the order of the expansion between one and four allows to be derived and compared 22 different plate models. The performances of the proposed elements have tested on application for whom an exact solution is available in open literature.

Findings

The obtained results complain quite well with the exact ones even if the need of advanced plate models come to evidence.

Originality/value

This paper describes how the capabilities of the UF to accurately analyze multilayered structures exploiting the shear mode actuation have been tested and states that in order to extend the capabilities of the UF, further efforts should be made toward the assumptions of discontinuous electric fields (potential and normal displacement). The paper confirms the need for advanced higher order plate models in modeling of adaptive laminate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 September 2004

Hao Hua Ning

This paper presents an optimal design method of number and placements of piezoelectric patch actuators in active vibration control of a plate. Eigenvalue distribution of energy…

Abstract

This paper presents an optimal design method of number and placements of piezoelectric patch actuators in active vibration control of a plate. Eigenvalue distribution of energy correlative matrix of control input force is applied to determine optimal number of the required actuators. Genetic algorithms (GAs) using active vibration control effects, which are taken as the objective function, are adopted to search optimal placements of actuators. The results show that disturbance exerted on a plate is a key factor of determining optimal number and placements of actuators in active structural vibration control, and a global and efficient optimization solution of multiple actuator placements can be obtained using GAs.

Details

Engineering Computations, vol. 21 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 73