Search results

1 – 10 of 23
Article
Publication date: 3 October 2023

Mohammad Hadi Moradi and Mehdi Ranjbar-Roeintan

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing…

Abstract

Purpose

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing piezoelectric layers.

Design/methodology/approach

A unit cell shall be taken into account for the simulation of BNNT's volume fraction. A rectangular micromechanical model is used to obtain the mechanical properties of unit cell of piezoelectric fiber-reinforced composite (PFRC). The three-dimensional (3D) elasticity method is presented to provide the relationship between displacements and stresses. The one-dimensional differential quadrature method (1D-DQM) and the state-space methodology are combined to create the semi-analytical technique. The state-space approach is utilized to implement an analytical resolution in the thickness direction, and 1D-DQM is used to implement an approximation solution in the radial direction. The composite consists of a polyvinylidene fluoride (PVDF) matrix and BNNTs as reinforcement.

Findings

A study on the PFRC is carried, likewise, the coefficients of its properties are obtained using a micro-electromechanical model known as the rectangular model. To implement the DQM, the plate was radially divided into sample points, each with eight state variables. The boundary situation and DQM are used to discretize the state-space equations, and the top and bottom application surface conditions are used to determine the natural frequencies of the plate. The model's convergence is assessed. Additionally, the dimensionless frequency is compared to earlier works and ABAQUS simulation in order to validate the model. Finally, the effects of the thickness, lateral wavenumber, boundary conditions and BNNT volume fraction on the annular plate's free vibration are investigated. The important achievements are that increasing the volume fraction of BNNTs increases the natural frequency.

Originality/value

The micromechanical “XY rectangle” model in PFRC along with the three-dimensional elasticity model is used in this literature to assess how the piezoelectric capabilities of BNNTs affect the free vibration of polymer-based composite annular plates under various boundary conditions.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 September 2023

Tasneem Firdous Islam, G.D. Kedar and Sajid Anwar

The purpose of this paper is to examine the impact of moisture and temperature changes on the behavior of a semi-infinite solid cylinder made of T300/5208 composite material. This…

Abstract

Purpose

The purpose of this paper is to examine the impact of moisture and temperature changes on the behavior of a semi-infinite solid cylinder made of T300/5208 composite material. This study aims to provide analytical solutions for temperature, moisture and thermal stress through the de-coupling technique and the method of integral transforms. Both coupled and uncoupled cases are considered.

Design/methodology/approach

This study investigates the hygrothermo-elastic response of a semi-infinite solid circular cylinder using an integral transform technique that includes Hankel and Fourier transforms. The cylinder is subjected to prescribed sources, and a numerical algorithm is developed for the numerical computation of the results. The goal is to understand how the cylinder responds to changes in temperature and moisture.

Findings

The paper presents an analytical solution for temperature, moisture and thermal stress in a semi-infinite solid cylinder obtained through the use of an integral transform technique. The study focuses on a graphite fiber-reinforced epoxy matrix composite material (T300/5208) and discusses the coupled and uncoupled effects of temperature, moisture and thermal stress on the material. The results of the transient response hygrothermo-elastic field are presented graphically to provide a visual representation of the findings.

Research limitations/implications

The research presented in this article is primarily hypothetical and focused on the analysis of mathematical models.

Originality/value

To the authors' best knowledge, this study is the first to investigate the hygrothermal effect in a semi-infinite circular cylinder. Additionally, the material properties used in the analysis are both homogenous and isotropic and independent of both temperature and moisture. These unique aspects of the study make it a novel contribution to the field.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

133

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 13 October 2023

Gabriela Maestri, Claudia Merlini, Leonardo Mejia and Fernanda Steffens

This study aims to develop two piezoelectric textile devices formed from different weft knitted fabric rapports (Jersey and Pique) to be applied in the renewable energy’s (RE…

Abstract

Purpose

This study aims to develop two piezoelectric textile devices formed from different weft knitted fabric rapports (Jersey and Pique) to be applied in the renewable energy’s (RE) area.

Design/methodology/approach

Two different weft knitted rapports were produced with polyester (PES). The device developed has five layers: a central of poly(vinylidene fluoride) (PVDF) nonwoven, involved by two insulating layers of PES knitted fabric; and two conductive external layers, made of polypyrrole-coated PES knitted fabric. The piezoelectric textile devices were joined by sewing the five layers of the device.

Findings

The FTIR technique confirmed the β-phase in the PVDF nonwoven. This study produced and tested two different textiles devices with piezoelectric behavior, confirmed by the correlated pattern of voltage and tensile stress difference curves, showing the potential application in RE’s and sustainable energies field as smart textiles, such as devices incorporated in garments in the areas of high movement (elbow, knee, foot, fingers and hands, among others), and as an energy generator device

Originality/value

Textile materials with piezoelectric properties promise to advance RE’s developments due to their high material flexibility and sensitivity to the electrical response. The knitted fabric technology presents flexibility due to its construction process. Comparative studies analyzing the electrical response between knitted and woven fabrics have already been realized. However, there is a gap in terms of research scientific research regarding the comparison of the piezoelectric effect in a material that presents different knitted fabric rapports.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 August 2023

Shakiba Narjabadi Fam and Ramona Massoud

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food…

Abstract

Purpose

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food products seems crucial due to health problems. The purpose of this paper is to discuss the different types of biosensors in aflatoxin determination.

Design/methodology/approach

Traditional detection methods are time consuming and expensive. As fast and accurate detection is important in monitoring food contaminants, alternative analytical methods would be essential. Biosensors are the intelligent design of sensitive sensors for precise detection of toxins in a short time. Various biosensors are being applied for aflatoxins detection in food products with many advantages over the traditional methods.

Findings

Biosensors are cost-effective, stable and have possessed high selectivity, specificity and accuracy in aflatoxins detection. Applying biosensors has been increased recently, so biosensing methods (optical, electrochemical, piezoelectrical, immunosensors, surface plasmon resonance and calorimetric) are discussed along with their advantages in this article.

Research limitations/implications

More efforts should be occurred to detect and decrease the aflatoxins by biosensors, and some traits like accuracy and selectivity would be the purpose of future projects. The combination of various techniques would also help in toxin detection issue in food products, so high efforts in this regard are also required for the upcoming years.

Originality/value

This article also reviews different types of biosensors simultaneously and explains their specificity for aflatoxin determination in different food products and also the future trends and requirements.

Details

Nutrition & Food Science , vol. 53 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 December 2023

S. Rama Krishna, J. Sathish, Talari Rahul Mani Datta and S. Raghu Vamsi

Ensuring the early detection of structural issues in aircraft is crucial for preserving human lives. One effective approach involves identifying cracks in composite structures…

Abstract

Purpose

Ensuring the early detection of structural issues in aircraft is crucial for preserving human lives. One effective approach involves identifying cracks in composite structures. This paper employs experimental modal analysis and a multi-variable Gaussian process regression method to detect and locate cracks in glass fiber composite beams.

Design/methodology/approach

The present study proposes Gaussian process regression model trained by the first three natural frequencies determined experimentally using a roving impact hammer method with crystal four-channel analyzer, uniaxial accelerometer and experimental modal analysis software. The first three natural frequencies of the cracked composite beams obtained from experimental modal analysis are used to train a multi-variable Gaussian process regression model for crack localization. Radial basis function is used as a kernel function, and hyperparameters are optimized using the negative log marginal likelihood function. Bayesian conditional probability likelihood function is used to estimate the mean and variance for crack localization in composite structures.

Findings

The efficiency of Gaussian process regression is improved in the present work with the normalization of input data. The fitted Gaussian process regression model validates with experimental modal analysis for crack localization in composite structures. The discrepancy between predicted and measured values is 1.8%, indicating strong agreement between the experimental modal analysis and Gaussian process regression methods. Compared to other recent methods in the literature, this approach significantly improves efficiency and reduces error from 18.4% to 1.8%. Gaussian process regression is an efficient machine learning algorithm for crack localization in composite structures.

Originality/value

The experimental modal analysis results are first utilized for crack localization in cracked composite structures. Additionally, the input data are normalized and employed in a machine learning algorithm, such as the multi-variable Gaussian process regression method, to efficiently determine the crack location in these structures.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 December 2023

Brahim Chebbab, Haroun Ragueb, Walid Ifrah and Dounya Behnous

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The…

Abstract

Purpose

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The primary goal is to investigate the factors that influence the reliability of the composite, specifically considering the effects of initial fiber deformation and fiber volume fraction.

Design/methodology/approach

The analysis involves a multi-step approach. Initially, micromechanics theory is employed to derive limit state equations that define the stress levels at which the fiber remains within an acceptable range of deformation. To assess the composite's structural reliability, a dedicated code is developed using the Monte Carlo method, incorporating random variables.

Findings

Results highlight the significance of initial fiber deformation and volume fraction on the composite's reliability. They indicate that the level of initial deformation of the fibers plays a crucial role in determining the composite reliability. A fiber with 0.5% initial deformation exhibits the ability to endure up to 28% additional stress compared to a fiber with 1% initial deformation. Conversely, a higher fiber volume fraction contributes positively to the composite's reliability. A composite with 60% fiber content and 0.5% initial deformation can support up to 40% additional stress compared to a composite containing 40% fibers with the same deformation.

Originality/value

The study's originality lies in its comprehensive exploration of the factors affecting the reliability of carbon fiber-epoxy matrix composites under compressive stresses. The integration of micromechanics theory and the Monte Carlo method for structural reliability analysis contributes to a thorough understanding of the composite's behavior. The findings shed light on the critical roles played by initial fiber deformation and fiber volume fraction in determining the overall reliability of the composite. Additionally, the study underscores the importance of careful fiber placement during the manufacturing process and emphasizes the role of volume fraction in ensuring the final product's reliability.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 March 2022

Adriana Gorea, Amy Dorie and Martha L. Hall

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Abstract

Purpose

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Design/methodology/approach

An experimental approach was used to integrate a novel moisture-responsive fabric panel into a seamless knitted bra, and the resulting compression variability in dry versus wet conditions were compared with those of a control bra. Air permeability and elongation testing of between breasts fabric panels was conducted in dry and wet conditions, followed by three-dimensional body scanning of eight human participants wearing the two bras in similar conditions. Questionnaires were used to evaluate perceived comfort and breast support of both bras in both conditions.

Findings

Air permeability test results showed that the novel panel had the highest variance between dry and wet conditions, confirming its moisture-responsive design, and increased its elongation coefficient in both wale and course directions in wet condition. There were significant main effects of bra type and body location on breast compression measurements. Breast circumferences in the novel bra were significantly larger than in the control bra condition. The significant two-way interaction between bra type and moisture condition showed that the control bra lost compressive power in wet condition, whereas the novel bra became more compressive when wet. Changes in compression were confirmed by participants’ perception of tighter straps and drier breast comfort.

Originality/value

These findings add to the limited scientific knowledge of moisture adaptive bra design using engineered knitted fabrics via advanced manufacturing technologies, with possible applications beyond sports bras, such as bras for breast surgery recovering patients.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2560

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 23