Search results

1 – 10 of 89
Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5130

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramicsmaterial and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glassmaterial and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2010

Ranjan Ganguli

The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the…

Abstract

Purpose

The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the following parts: health monitoring, smart rotor, design optimization, control, helicopter rotor dynamics, active control of structural response (ACSR) and helicopter design and development. Aspects of health monitoring and smart rotor are discussed in detail. Further work needed and areas for international collaboration are pointed out.

Design/methodology/approach

The archival journal papers on helicopter engineering published from India are obtained from databases and are studied and discussed. The contribution of the basic research to the state‐of‐the‐art in helicopter engineering science is brought out.

Findings

It is found that strong research capabilities have developed in rotor system health and usage monitoring, rotor blade design optimization, ACSR, composite rotor blades and smart rotor development. Furthermore, rotorcraft modeling and analysis aspects are highly developed with considerable manpower available and being generated in these areas.

Practical implications

Two helicopter projects leading to the “advanced light helicopter” and “light combat helicopter” have been completed by Hindustan Aeronautics Ltd These helicopter programs have benefited from the basic research and also provide platforms for further basic research and deeper industry academic collaborations. The development of well‐trained helicopter engineers is also attractive for international helicopter design and manufacturing companies. The basic research done needs to be further developed for practical and commercial applications.

Originality/value

This is the first comprehensive research on rotorcraft research in India, an important emerging market, manufacturing and sourcing destination for the industry.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glassmaterial and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 May 2020

Arka Ghosh, David John Edwards, M. Reza Hosseini, Riyadh Al-Ameri, Jemal Abawajy and Wellington Didibhuku Thwala

This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective…

Abstract

Purpose

This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.

Design/methodology/approach

A mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).

Findings

The research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.

Originality/value

Accurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 August 2014

Shaopeng Liu, Yourong Li, Tao Wang and Yi Luo

– The purpose of this paper is to propose a bolt loosening detection approach which integrates piezoelectric ceramics with active sensor technology.

Abstract

Purpose

The purpose of this paper is to propose a bolt loosening detection approach which integrates piezoelectric ceramics with active sensor technology.

Design/methodology/approach

When the ultrasonic wave propagates across the contact surface at the bolted joints, because of the existence of imperfect interface, only part of the ultrasonic wave energy is passed through it. According to the Hertz contact theory, the passed energy depends on the true contact area which is decided by the bolt pretension. Hence, by measuring the received energy with the sensing piezoelectric material, the bolt pretension or bolt loosening can be detected.

Findings

The experiment revealed that the wave energy propagated across the interface is strongly correlated to the torque level. This relationship will be a good indicator to detect the status of bolted joints. The presented method has a potential application for the monitoring of bolt load loss in-site. Moreover, some factors which will affect the propagation of ultrasonic wave across the bolted joints are discussed in this paper.

Originality/value

This paper provides a good criterion to detect bolt load loss.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 October 2005

Qinglei Hu and Guangfu Ma

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities…

1031

Abstract

Purpose

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities during attitude control for spacecraft designers, which can help them analyze and design the attitude control system.

Design/methodology/approach

The new approach integrates the technique of active vibration suppression and the method of variable structure control. The design process is twofold: first design of the active vibration controller by using piezoelectric materials to add damping to the structures in certain critical modes in the inner feedback loop, and then a second feedback loop designed using the variable structure output feedback control (VSOFC) to slew the spacecraft and satisfy the pointing requirements.

Findings

Numerical simulations for the flexible spacecraft show that the precise attitude control and vibration suppression can be accomplished using the derived vibration attenuator and attitude control controller.

Research limitations/implications

Studies on how to control the flywheel (motor) under the action of the friction are left for future work.

Practical implications

An effective method is proposed for the spacecraft engineers planning to design attitude control system for actively suppressing the vibration and at the same time quickly and precisely responding to the attitude control command.

Originality/value

This paper fulfills a useful source of theoretical analysis for the attitude control system design and offers practical help for the spacecraft designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 June 2002

81

Abstract

Details

Sensor Review, vol. 22 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 June 2010

Van‐Tsai Liu, Chien‐Hung Liu, Hau‐Wei Li, Chieh‐Li Chen, Chun‐Liang Lin and Yu‐Chen Lin

The purpose of this paper is to develop the multi‐degree‐of‐freedom measurement system to test, verify, and control the nano‐measuring machine.

Abstract

Purpose

The purpose of this paper is to develop the multi‐degree‐of‐freedom measurement system to test, verify, and control the nano‐measuring machine.

Design/methodology/approach

A generic differential model approach is constructed to numerically describe the hysteresis effects of piezoelectric actuators. Based on the generic differential model, a feedforward compensator with a proportional integral (PI) type controller is designed to compensate for the hysteresis nonlinearity of a piezoelectric actuated three degree‐of‐freedom coplanar nanostage which can provide high‐precision applications.

Findings

The Z‐tilts (z, pitch, and roll motion) error compensation stage of the nano‐measuring machine is accomplished. Moreover, a high‐resolution laser interferometer is used to measure position accurately.

Originality/value

This paper contributes to develop a tracking control design method for the piezoelectric motion platform which combines a closed‐loop feedforward compensator with a PI type controller.

Details

Kybernetes, vol. 39 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 May 2020

Al Arsh Basheer

Smart materials also called intelligent materials are gaining importance continuously in many industries including aerospace one. It is because of the unique features of these…

1884

Abstract

Purpose

Smart materials also called intelligent materials are gaining importance continuously in many industries including aerospace one. It is because of the unique features of these materials such as self-sensing, self-adaptability, memory capabilities and manifold functions. For a long time, there is no review of smart materials. Therefore, it is considered worthwhile to write a review on this subject.

Design/methodology/approach

A thorough search of the literature was carried out through SciFinder, ScienceDirect, SpringerLink, Wiley Online Library and reputed and peer-reviewed journals. The literature was critically analyzed and a review was written.

Findings

This study describes the advances in smart materials concerning their applications in aerospace industries. The classification, working principle and recent developments (nano-smart materials) of smart materials are discussed. Besides, the future perspectives of these materials are also highlighted. Much research has not been done in this area, which needs more extensive study.

Originality/value

Certainly, this study will be highly useful for academicians, researchers and technocrats working in aerospace industries.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 89