Search results

1 – 10 of over 46000
Article
Publication date: 1 July 2002

Charles G. Petersen

In today’s competitive global economy, the focus is on faster delivery of small more frequent orders of inventory at a lower total cost. This often precludes the use of full…

6092

Abstract

In today’s competitive global economy, the focus is on faster delivery of small more frequent orders of inventory at a lower total cost. This often precludes the use of full pallet picking in warehouses so firms commonly use manual picking of cases and broken‐cases. Many firms increase the efficiency of their warehouses by using zone picking. Zone picking requires that a worker only pick those stock‐keeping units (SKUs) stored within their picking zone. In this paper we examine the configuration or shape of these picking zones by simulating a bin‐shelving warehouse to measure picker travel where SKUs are assigned storage locations either using random or volume‐based storage. The results show that the size or storage capacity of the zone, the number of items on the pick list, and the storage policy have a significant effect on picking zone configuration. In addition, we found that the absence of a back cross aisle also affected picking zone configuration. These results offer solutions to managers looking to implement improvements in distribution center operations.

Details

International Journal of Operations & Production Management, vol. 22 no. 7
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 1 October 1999

Charles G. Petersen

Order picking, the activity by which a number of goods are retrieved from a warehousing system to satisfy a number of customer orders, is an essential link in the supply chain and…

9096

Abstract

Order picking, the activity by which a number of goods are retrieved from a warehousing system to satisfy a number of customer orders, is an essential link in the supply chain and is the major cost component of warehousing. The critical issue is to simultaneously reduce the cost and increase the speed of the order picking activity. The main objectives of this paper are: evaluate various routing heuristics and an optimal routine in a volume‐based and random storage environment; compare the performance of volume‐based storage to random storage; and examine the impact of travel speed and picking rates on routing and storage policy performance. The experimental results show the solution gap between routing heuristics and optimal routing is highly dependent on the travel speed and picking rate, the storage policy, and the size of the pick list. In addition, volume‐based storage produced significant savings over random storage, but again these savings are dependent on the travel speed and picking rate.

Details

International Journal of Operations & Production Management, vol. 19 no. 10
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 1 April 2000

Franco Caron, Gino Marchet and Alessandro Perego

Manual picking system productivity is greatly influenced by layout design (i.e. the layout scheme and the number of aisles). In fact, layout plays an important role in determining…

6995

Abstract

Manual picking system productivity is greatly influenced by layout design (i.e. the layout scheme and the number of aisles). In fact, layout plays an important role in determining the expected length of pickers’ tours which is itself a relevant component of the time required to complete a given set of orders. This paper presents a simulation approach to efficient layout design of the picking area in picker‐to‐part systems using random or cube per order index (COI)‐based storage policies. The optimal number of aisles depends on both strategic/long‐term and short‐term decisions. Indeed, layout is a function of the total storage length which, in turn, is related to strategic decisions concerning the forward/reserve problem, i.e. the choice of the fraction of items to be located in the picking (forward) area. Moreover, layout preferences seem to be strongly affected by operating decisions concerning batch size, i.e. number of picks in a tour, and the adoption of a COI‐based storage policy. Some design guidelines are provided for both stable environments where the operating conditions are well defined, and for unstable contexts where conditions may vary.

Details

Integrated Manufacturing Systems, vol. 11 no. 2
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 1 January 1981

Brian N McKibbin

In the mid‐1970s Mothercare decided to establish a new distribution centre and mail order warehouse; a number of alternative order picking systems were considered for the…

Abstract

In the mid‐1970s Mothercare decided to establish a new distribution centre and mail order warehouse; a number of alternative order picking systems were considered for the company's world‐wide mail order operation. This article examines the various alternatives and describes the system which was finally selected — a carousel storage and selection arrangement. Current performance statistics of the system are provided which are related to Mothercare's sales volumes.

Details

Retail and Distribution Management, vol. 9 no. 1
Type: Research Article
ISSN: 0307-2363

Article
Publication date: 22 January 2024

Qiaojun Zhou, Ruilong Gao, Zenghong Ma, Gonghao Cao and Jianneng Chen

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment…

Abstract

Purpose

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment, leading to grasping failure and apple damage.

Design/methodology/approach

This study introduces the system units of the apple-picking robot prototype, proposes a method to determine the apple-picking direction via 3D point cloud data and optimizes the path planning method according to the calculated picking direction.

Findings

After the field experiments, the average deviation of the calculated picking direction from the desired angle was 11.81°, the apple picking success rate was 82% and the picking cycle was 11.1 s.

Originality/value

This paper describes a picking control method for an apple-picking robot that can improve the success and reliability of picking in an unstructured environment and provides a basis for automated and mechanized picking in the future.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2024

Marco Fabio Benaglia, Mei-Hui Chen, Shih-Hao Lu, Kune-Muh Tsai and Shih-Han Hung

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature…

189

Abstract

Purpose

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature logistics centers, with the goal of reducing food loss caused by temperature abuse.

Design/methodology/approach

The authors applied ABC clustering to the products in a simulated database of historical orders modeled after the actual order pattern of a large cold logistics company; then, the authors mined the association rules and calculated the sales volume correlation indices of the ordered products. Finally, the authors generated three different simulated order databases to compare order picking time and waiting time of orders in the staging area under eight different storage location assignment strategies.

Findings

All the eight proposed storage location assignment strategies significantly improve the order picking time (by up to 8%) and the waiting time of orders in the staging area (by up to 22%) compared with random placement.

Research limitations/implications

The results of this research are based on a case study and simulated data, which implies that, if the best performing strategies are applied to different environments, the extent of the improvements may vary. Additionally, the authors only considered specific settings in terms of order picker routing, zoning and batching: other settings may lead to different results.

Practical implications

A storage location assignment strategy that adopts dispersion and takes into consideration ABC clustering and shipping frequency provides the best performance in minimizing order picker's travel distance, order picking time, and waiting time of orders in the staging area. Other strategies may be a better fit if the company's objectives differ.

Originality/value

Previous research on optimal storage location assignment rarely considered item association rules based on sales volume correlation. This study combines such rules with several storage planning strategies, ABC clustering, and two warehouse layouts; then, it evaluates their performance compared to the random placement, to find which one minimizes the order picking time and the order waiting time in the staging area, with a 30-min time limit to preserve the integrity of the cold chain. Order picking under these conditions was rarely studied before, because they may be irrelevant when dealing with temperature-insensitive items but become critical in cold warehouses to prevent temperature abuse.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 23 January 2024

Dominic Loske, Tiziana Modica, Matthias Klumpp and Roberto Montemanni

Prior literature has widely established that the design of storage locations impacts order picking task performance. The purpose of this study is to investigate the performance…

Abstract

Purpose

Prior literature has widely established that the design of storage locations impacts order picking task performance. The purpose of this study is to investigate the performance impact of unit loads, e.g. pallets or rolling cages, utilized by pickers to pack products after picking them from storage locations.

Design/methodology/approach

An empirical analysis of archival data on a manual order picking system for deep-freeze products was performed in cooperation with a German brick-and-mortar retailer. The dataset comprises N = 343,259 storage location visits from 17 order pickers. The analysis was also supported by the development and the results of a batch assignment model that takes unit load selection into account.

Findings

The analysis reveals that unit load selection affects order picking task performance. Standardized rolling cages can decrease processing time by up to 8.42% compared to standardized isolated rolling boxes used in cold retail supply chains. Potential cost savings originating from optimal batch assignment range from 1.03% to 39.29%, depending on batch characteristics.

Originality/value

This study contributes to the literature on factors impacting order picking task performance, considering the characteristics of unit loads where products are packed on after they have been picked from the storage locations. In addition, it provides potential task performance improvements in cold retail supply chains.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 21 November 2023

Jonas Koreis, Dominic Loske and Matthias Klumpp

Increasing personnel costs and labour shortages have pushed retailers to give increasing attention to their intralogistics operations. We study hybrid order picking systems, in…

238

Abstract

Purpose

Increasing personnel costs and labour shortages have pushed retailers to give increasing attention to their intralogistics operations. We study hybrid order picking systems, in which humans and robots share work time, workspace and objectives and are in permanent contact. This necessitates a collaboration of humans and their mechanical coworkers (cobots).

Design/methodology/approach

Through a longitudinal case study on individual-level technology adaption, we accompanied a pilot testing of an industrial truck that automatically follows order pickers in their travel direction. Grounded on empirical field research and a unique large-scale data set comprising N = 2,086,260 storage location visits, where N = 57,239 storage location visits were performed in a hybrid setting and N = 2,029,021 in a manual setting, we applied a multilevel model to estimate the impact of this cobot settings on task performance.

Findings

We show that cobot settings can reduce the time required for picking tasks by as much as 33.57%. Furthermore, practical factors such as product weight, pick density and travel distance mitigate this effect, suggesting that cobots are especially beneficial for short-distance orders.

Originality/value

Given that the literature on hybrid order picking systems has primarily applied simulation approaches, the study is among the first to provide empirical evidence from a real-world setting. The results are discussed from the perspective of Industry 5.0 and can prevent managers from making investment decisions into ineffective robotic technology.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 25 August 2022

Fabio Sgarbossa, Christoph H. Glock, Eric H. Grosse, Martina Calzavara and René de Koster

In manual order picking systems, temporary workers are often employed to handle demand peaks. While this increases flexibility, it may hamper productivity, as they are usually…

Abstract

Purpose

In manual order picking systems, temporary workers are often employed to handle demand peaks. While this increases flexibility, it may hamper productivity, as they are usually unfamiliar with the processes and may have little experience. It is important for managers to understand how quickly inexperienced workers arrive at full productivity and which factors support workers in improving their productivity. This paper aims to investigate how learning improves the performance of order pickers, and how their regulatory focus (RF) and monetary incentives, as management actions, influence learning.

Design/methodology/approach

Data was collected in two case studies in controlled field-lab experiments and statistically analysed. This allowed evaluating the validity of hypotheses through an ANOVA, the calculation of correlation coefficients and the application of regression models.

Findings

A monetary incentive based on total order picking time and pick errors has a positive influence on order picking time, but not on pick quality. The incentive influences initial productivity, but not the learning rate. A dominant promotion-oriented RF increases the effect of the incentive on initial productivity, but it does not impact worker learning.

Practical implications

This study contributes to behavioral and human-focused order picking management and supports managers in setting up work plans and developing incentive systems for learning and productivity enhancement, considering worker RF.

Originality/value

This work is among the few to empirically investigate the effect of monetary incentives on learning in interaction with RF. It is the first study to investigate these concepts in an order picking scenario.

Details

International Journal of Operations & Production Management, vol. 42 no. 11
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 31 August 2022

G.T.S. Ho, S.K. Choy, P.H. Tong and V. Tang

Demand forecast methodologies have been studied extensively to improve operations in e-commerce. However, every forecast inevitably contains errors, and this may result in a…

461

Abstract

Purpose

Demand forecast methodologies have been studied extensively to improve operations in e-commerce. However, every forecast inevitably contains errors, and this may result in a disproportionate impact on operations, particularly in the dynamic nature of fulfilling orders in e-commerce. This paper aims to quantify the impact that forecast error in order demand has on order picking, the most costly and complex operations in e-order fulfilment, in order to enhance the application of the demand forecast in an e-fulfilment centre.

Design/methodology/approach

The paper presents a Gaussian regression based mathematical method that translates the error of forecast accuracy in order demand to the performance fluctuations in e-order fulfilment. In addition, the impact under distinct order picking methodologies, namely order batching and wave picking. As described.

Findings

A structured model is developed to evaluate the impact of demand forecast error in order picking performance. The findings in terms of global results and local distribution have important implications for organizational decision-making in both long-term strategic planning and short-term daily workforce planning.

Originality/value

Earlier research examined demand forecasting methodologies in warehouse operations. And order picking and examining the impact of error in demand forecasting on order picking operations has been identified as a research gap. This paper contributes to closing this research gap by presenting a mathematical model that quantifies impact of demand forecast error into fluctuations in order picking performance.

Details

Industrial Management & Data Systems, vol. 122 no. 11
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 46000