Search results

1 – 10 of 25
Article
Publication date: 14 November 2023

Huimin Yang, Chunlin Ye, Yi Li and Songwei Zhang

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the…

Abstract

Purpose

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the corrosion inhibiting, rheological and tribological performances.

Design/methodology/approach

Electrochemical tests such as electrochemical impedance spectroscopy and potentiodynamic polarization curves were used on Gamry electrochemical workstation to research the corrosion inhibition properties of ILs in 1.0 M HCl corrosive solution. The rheological properties of different grease samples were tested on a rheometer. The tribological properties were investigated on SRV-V oscillating reciprocating friction and wear tester. Scanning electron microscope, X-ray spectrometer and X-ray photoelectron spectrometer were used to characterize the lubricating mechanism.

Findings

The 2-MBT functionalized ILs have excellent corrosion inhibition properties. When used as additives in LCG, they both exhibited enhancing effects on thermostability, colloid stability and structural recoverability, and furthermore, outstanding friction-reducing and antiwear properties were also obtained. Surface analysis indicated that the superior lubricating performances of 2-MBT functionalized ILs were mainly ascribed to the formation of tribochemical products on wear tracks, including organic compounds with C–O bond, Fe2O3 and FeS2.

Originality/value

The 2-MBT-based ILs synthesized in this study were multifunctional additives with excellent corrosion inhibiting and tribological properties, which would have a very broad application prospect in lubricating grease industry.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 December 2022

M.M. Bhatti, Sadiq M. Sait, R. Ellahi, Mikhail A. Sheremet and Hakan Oztop

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell…

Abstract

Purpose

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell fluid.

Design/methodology/approach

The blood is used as a base fluid to study the rheological effects in a wavy asymmetric channel. The effect of viscous dissipation is also taken into account. The mathematical model is developed using the lubrication technique. The perturbation method is used to solve the nondimensional nonlinear differential equations, whereas the pumping properties have been analyzed using numerical integration.

Findings

The impact of entropy generation, Brinkman number, Hartmann number, nanoparticles volume fraction, thermal Grashof number, Brinkman number and Eyring–Powell fluid parameter is examined on the velocity profile, temperature profile and pumping characteristics. It is observed that the introduction of gold and silver nanoparticles boosts the velocity field in a smaller segment of the channel. The temperature profile rises for the increasing values of Hartmann number, Brinkman number and nanoparticle volume fractions while the temperature profile is restrained by the Eyring–Powell fluid parameter. The pumping rate rises in all sections as the thermal Grashof number and Hartmann number increase; however, the Eyring–Powell fluid parameter has the reverse effect. The volume of the trapping boluses is significantly affected by the Eyring–Powell fluid parameter, thermal Grashof number and fluid parameter.

Originality/value

The results are original and contribute to discover the role of hybrid nanoparticles under the influence of entropy generation viscous dissipation and magnetic fields. Pharmaceutical technology may use this research for things like better mucoadhesive drug delivery systems and more productive peristaltic micropumps.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 May 2022

H. Abd El-Wahab and Raafat A. El-Eisawy

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Abstract

Purpose

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Design/methodology/approach

Various modified alkyd resins were prepared by partial replacement of 3,6-dichloro benzo[b]thiophene-2-carbonyl bis-(2-hydroxy ethyl)-amide as a source of polyol with glycerol and confirmed by acid value, FT-IR, 1H-NMR. The modified alkyd resins were covering a wide range of oil lengths and hydroxyl content (0%, 10%, 20% and 30% excess-OH). The antimicrobial activity of the prepared alkyds was also investigated. The coatings of 60 ± 5 µm thickness were applied to the surface of glass panels and mild steel strips by means of a brush. Physico-mechanical tests, chemical resistance and antimicrobial activities were investigated.

Findings

The obtained results illustrate that the introduction of benzo[b]thiophene derivative as a modifier polyol within the resin structure improved the film performance and enhanced the physico-mechanical characteristics, chemical resistance and the antimicrobial activities.

Practical implications

The modified alkyd resins can be employed as antimicrobial binders in paint compositions for a variety of surfaces, particularly those that are susceptible to a high number of bacteria.

Originality/value

Modified alkyd resins based on antimicrobial heterocyclic compounds have the potential to be promising in the manufacturing of antimicrobial coatings and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time. Also, they can be applied in different substrates for industrial applications.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Book part
Publication date: 16 August 2023

Olayinka Akanle and Adedeji Adewusi

Ọsẹ dúdú production and sale constitute a major indigenous business among the Yoruba people. Scholars have noted that the business is capable of boosting the socio-economic status…

Abstract

Ọsẹ dúdú production and sale constitute a major indigenous business among the Yoruba people. Scholars have noted that the business is capable of boosting the socio-economic status of black soap entrepreneurs and of countries. However, ọsẹ dúdú enterprise has some significant threats and problems that are yet to be researched. This chapter examined the challenges of osẹ dúdú entrepreneurs in Southwest Nigeria. Twenty-six interviews were conducted among indigenous black soap producers and sellers in Ogun, Oyo and Lagos States. Data were analysed in themes. Weather, financial, spiritual, copyright and succession challenges, as well as issues such as a large number of sellers, debt, lack of support, pricing and brand competition, were found to be problems faced by black soap entrepreneurs. This chapter concluded that certain controllable and uncontrollable factors were not only capable of limiting the development of osẹ dúdú business but also have adverse implications for the achievement of the sustainable development goals through the indigenous resource. This chapter suggests that osẹ dúdú business actors such as mechanical engineers, local fabricators, financial institutions, and governmental and non-governmental agencies collaborate with black soap entrepreneurs to ameliorate the challenges of the latter. It is only through this alliance that black soap entrepreneurs can contribute to indigenous business development and the achievement of sustainable development goals in Africa.

Details

Casebook of Indigenous Business Practices in Africa
Type: Book
ISBN: 978-1-80455-763-1

Keywords

Article
Publication date: 18 August 2023

Krishna Manasvi J., Rajesh Matai and Nagesh N. Murthy

Due to the recent disruptions caused by COVID-19, global supply chains are stress tested. The affected supply chains have interfered with market tonnage prices for the yield of…

Abstract

Purpose

Due to the recent disruptions caused by COVID-19, global supply chains are stress tested. The affected supply chains have interfered with market tonnage prices for the yield of perishable products like mangoes that are highly dependent on their quality. This research, through empirical findings, thus determines and comprehends the factors influencing mango quality (size).

Design/methodology/approach

A framework is developed for finding the potential factors of quality building on the previous literature and studies on the available topic. The data collection included face-to-face interviews comprising 240 farmers, hired managers and preharvest contractors in India's Jangaon, Rangareddy and Yadadri Bhuvanagiri districts of Telangana state. The data analysis is done using multiple regression, and the outcomes form the basis of the design of the experiments model.

Findings

The empirical insights support that the quality of mango is affected by factors such as the number of picking cycles, the cost of fertilizer, the variety of fertilizers used, the variety of pesticides used and pesticide application frequency. The direct implications are the benefit to farmers in improving mango quality and maximizing profit per yield cycle.

Research limitations/implications

To the best of the authors’ knowledge, the first research that has specifically focused on holistically improving the quality(size) of mangoes.

Originality/value

The findings contribute to the perishable supply chain literature, specifically to the mango study, to comprehensively showcase the factors impacting the quality of mangoes and provide guidance to farmers regarding orchard practices.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 15 November 2022

Samuel Ayofemi Olalekan Adeyeye, Olusola Timothy Bolaji, T.A. Abegunde, Helen O. Emun and Rasheed Adesina Oyenubi

The purpose of this study is to evaluate the quality and sensory properties of cookies produced from wheat flour using avocado puree as fat substitute.

Abstract

Purpose

The purpose of this study is to evaluate the quality and sensory properties of cookies produced from wheat flour using avocado puree as fat substitute.

Design/methodology/approach

Cookies were produced from wheat flour using avocado puree as fat substitute in ratio 0%, 25%, 50%, 75% and 100%, respectively. The formulation of margarine and avocado puree blends was done by using D-Optimal Mixture Design. In all, 20 samples were produced from each substitution level and analyses were done in triplicates to obtain mean values using standard methods. Means were separated by Duncan’s multiple range test, and significances were accepted at less than 5% confidence level (p < 0.05). Proximate and functional analyses were conducted on the flour samples, while cookie samples were subjected to proximate and sensory analyses.

Findings

The results of this study revealed that the values of loose bulk density, packed bulk density, oil absorption density, water absorption capacity, swelling power, solubility and dispersibility of the flours at p < 0.05 are 0.3–0.4 g/ml, 0.5–0.7 g/ml, 16.9%–94.0%, 39.7%–80.6%, 461.2%–618.2%, 6.0%–29.8% and 69.0%–82.8%, respectively. The moisture, protein, fat, total dietary fiber, total ash and carbohydrate contents of the cookies at p < 0.05 are 3.6%–16.7%, 6.5%–9.9%, 2.5%–19.2%, 1.7%–1.9%, 1.1%–3.0% and 65.0%–70.7%, respectively. The taste, color, crispiness, texture and overall acceptability of the cookies at p < 0.05 are 7.4–7.8, 6.9–7.5, 7.2–7.9, 7.3–7.7 and 7.4–8.3, respectively. The sensory scores showed that panelists preferred the taste, crispiness and texture of the cookies produced from wheat flour using avocado puree as fat substitute at varying proportion. The sensory characteristics of sample WF4 (100% avocado puree) were rated overall best in all the parameters tested followed by sample WF3 (75% avocado puree). Hence, this study established the possibility of producing cookies from wheat flour using avocado puree as fat substitute without a negative impact on the sensory characteristics and the consumers’ acceptability.

Practical implications

The cookies produced from this study are not meant for vegetarians because eggs were added in the formulations and recipes but could be valuable to ovo-vegetarians that may take food with eggs without restriction. The major challenge of this study was that avocados are very expensive in much of the world, so this is only suitable and viable where there is an excess of the fruit.

Originality/value

This study examined the use of avocado puree as fat substitute in cookie production. Effects of avocado puree on proximate composition and functionality of cookies produced from wheat flour were also determined. This approach was novel, and it will encourage the use of avocado for value-added in industrial food production.

Details

Nutrition & Food Science , vol. 53 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Abstract

Purpose

This study aims to develop sweet chestnut incorporated corn-based extrudates by the optimization of process conditions.

Design/methodology/approach

The independent process variables for extrusion (blend ratio, barrel temperature, screw speed and feed moisture) were investigated to govern their impact on reliant variables, namely, bulk density, specific mechanical energy, water absorption index, water solubility index, color and hardness. Product and system responses were significantly (p < 0.05) affected by the independent variables. Experimental design with quadratic models experienced a high coefficient of determination (R2 = 0.99).

Findings

Numerical optimization for the development of extrudates resulted in optimum conditions having corn flour: sweet chestnut flour (80:20), barrel temperature (120°C), screw speed (340 rpm) and feed moisture (12%). Fat, moisture and protein contents of the developed extrudates using optimum conditions were significantly (p < 0.05) lower compared to raw materials – corn and sweet chestnut. The packaging of extrudates in aluminum laminates revealed shelf stability of three months at room temperature without deterioration of quality.

Originality/value

Nutritionally rich sweet chestnut extruded products would be an exclusive option to already existing snacks in the market and can facilitate a new sphere in extruded product sector.

Details

Nutrition & Food Science , vol. 53 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 16 August 2023

Taraprasad Mohapatra, Sudhansu Sekhar Mishra, Mukesh Bathre and Sudhansu Sekhar Sahoo

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of…

Abstract

Purpose

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The performance parameters like brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), whereas CO emission, HC emission, CO2 emission, NOx emission, exhaust gas temperature (EGT) and opacity are the emission parameters measured during the test. Tests are conducted for 2, 6 and 10 kg of load, 16.5 and 17.5 of CR.

Design/methodology/approach

In this investigation, the first engine was fueled with 100% diesel and 100% Calophyllum inophyllum oil in single-fuel mode. Then Calophyllum inophyllum oil with producer gas was fed to the engine. Calophyllum inophyllum oil offers lower BTE, CO and HC emissions, opacity and higher EGT, BSEC, CO2 emission and NOx emissions compared to diesel fuel in both fuel modes of operation observed. The performance optimization using the Taguchi approach is carried out to determine the optimal input parameters for maximum performance and minimum emissions for the test engine. The optimized value of the input parameters is then fed into the prediction techniques, such as the artificial neural network (ANN).

Findings

From multiple response optimization, the minimum emissions of 0.58% of CO, 42% of HC, 191 ppm NOx and maximum BTE of 21.56% for 16.5 CR, 10 kg load and dual fuel mode of operation are determined. Based on generated errors, the ANN is also ranked for precision. The proposed ANN model provides better prediction with minimum experimental data sets. The values of the R2 correlation coefficient are 1, 0.95552, 0.94367 and 0.97789 for training, validation, testing and all, respectively. The said biodiesel may be used as a substitute for conventional diesel fuel.

Originality/value

The blend of Calophyllum inophyllum oil-producer gas is used to run the diesel engine. Performance and emission analysis has been carried out, compared, optimized and validated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 25