Search results

1 – 10 of over 3000
Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 October 2023

Shilpa Chaudhary, Sunita Deswal and Sandeep Singh Sheoran

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

103

Abstract

Purpose

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

Design/methodology/approach

The concept of enunciation is used in the generalized theory of thermoelasticity in accordance with the Green–Lindsay and Eringen’s nonlocal elasticity models. The linear viscoelasticity model developed by Kelvin–Voigt is used to characterize the viscoelastic properties of transversely isotropic materials.

Findings

It has been noticed that three plane waves, which are coupled together, travel through the medium at three different speeds. The derivation of reflection coefficients and energy ratios for reflected waves is carried out by incorporating suitable boundary conditions. Numerical computations are performed for the amplitude ratios, phase speeds and energy partition and displayed in graphical form.

Originality/value

The outcomes of the numerical simulation demonstrate that the amplitude ratios are significantly influenced by variable thermal conductivity, nonlocal parameters and viscosity. It is further observed from the plots that the phase speeds in a transversely isotropic medium depend on the angle of incidence. In addition, it has been established that the energy is preserved during the reflection phenomenon.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 February 2024

Jo Trowsdale and Richard Davies

There is a lack of clarity about what constitutes Science, Technology, Engineering, Arts and Mathematics (STEAM) education and what the arts contribute. In this paper the authors…

Abstract

Purpose

There is a lack of clarity about what constitutes Science, Technology, Engineering, Arts and Mathematics (STEAM) education and what the arts contribute. In this paper the authors discuss a distinct model, theorised from a five-year study of a particular, innovative STEAM education project (The Imagineerium), and developed by the researchers through working with primary school teachers in England within a second project (Teach-Make). The paper examines how teachers implemented this model, the Trowsdale art-making model for education (the TAME), and reflected on its value and positive impact on their planning and pedagogy.

Design/methodology/approach

The paper draws on two studies: firstly, a five-year, mixed methods, participative study of The Imagineerium and secondly a participative and collaborative qualitative study of Teach-Make.

Findings

Study of The Imagineerium showed strong positive educational outcomes for pupils and an appetite from teachers to translate the approach to the classroom. The Teach-Make project showed that with a clear curriculum model (the TAME) and professional development to improve teachers' planning and active pedagogical skills, they could design and deliver “imagineerium-like” schemes of work in their classrooms. Teachers reported a positive impact on both their own approach to supporting learning, as well as pupil progression and enjoyment.

Originality/value

The paper argues that the TAME, a consolidation of research evidence from The Imagineerium and developed through Teach-Make, offers both a distinctive and effective model for STEAM and broader education, one that is accessible to, valued by and manageable for teachers.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Article
Publication date: 15 December 2023

Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng and Tao Zhang

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Abstract

Purpose

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Design/methodology/approach

Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.

Findings

The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.

Originality/value

A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 25 October 2023

Akram Qashou, Sufian Yousef, Amaechi Okoro and Firas Hazzaa

The malfunction variables of power stations are related to the areas of weather, physical structure, control and load behaviour. To predict temporal power failure is difficult due…

Abstract

The malfunction variables of power stations are related to the areas of weather, physical structure, control and load behaviour. To predict temporal power failure is difficult due to their unpredictable characteristics. As high accuracy is normally required, the estimation of failures of short-term temporal prediction is highly difficult. This study presents a method for converting stochastic behaviour into a stable pattern, which can subsequently be used in a short-term estimator. For this conversion, K-means clustering is employed, followed by Long-Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms are used to perform the Short-term estimation. The environment, the operation and the generated signal factors are all simulated using mathematical models. Weather parameters and load samples have been collected as part of a data set. Monte-Carlo simulation using MATLAB programming has been used to conduct experimental estimation of failures. The estimated failures of the experiment are then compared with the actual system temporal failures and found to be in good match. Therefore, for any future power grid, there is a testbed ready to estimate the future failures.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

Article
Publication date: 6 June 2023

Zhanfu Li, Jianbin Liang, Peiyu Jia, Shaoqi Zheng, Hongzhi Zhou and Xin Tong

The purpose of this paper is to study the screen surface parameters of the double deck vibrating screen, in sections, to determine the influence of each part of the screen surface…

Abstract

Purpose

The purpose of this paper is to study the screen surface parameters of the double deck vibrating screen, in sections, to determine the influence of each part of the screen surface on the screening efficiency of the vibrating screen. Finally, the best screening parameters were calculated to obtain the best screening performance.

Design/methodology/approach

In this paper, the discrete element method is used to simulate the process of two-layer subsection screening. Response surface test was used to analyze the influence of various factors and their interactions on screening results. Finally, based on the binomial regression model of screening efficiency, the optimal combination of vibration parameters is calculated.

Findings

In the screening process of vibrating screen, due to the different screening environments in each area of the screen surface, the single-layer linear vibrating screen with equal screen surface parameters cannot obtain the best screening performance. Among the single factors, the effect of vibration frequency is the most significant.

Originality/value

To address the issue of single layer linear vibrating screens with equal screen surface parameters being unable to maintain optimal screening performance when handling large amounts of materials. This article proposes a double layer vibrating screen with different screen surface grids and screen surface angles to address the problem of low screening performance of traditional single layer linear vibrating screens.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 April 2024

Lida Haghnegahdar, Sameehan S. Joshi, Rohith Yanambaka Venkata, Daniel A. Riley and Narendra B. Dahotre

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems…

16

Abstract

Purpose

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems. Manufacturing systems are increasingly faced with risk of attacks not only by traditional malicious actors such as hackers and cyber-criminals but also by some competitors and organizations engaged in corporate espionage. This paper aims to elaborate a plausible risk practice of designing and demonstrate a case study for the compromised-based malicious for polymer 3D printing system.

Design/methodology/approach

This study assumes conditions when a machine was compromised and evaluates the effect of post compromised attack by studying its effects on tensile dog bone specimens as the printed object. The designed algorithm removed predetermined specific number of layers from the tensile samples. The samples were visually identical in terms of external physical dimensions even after removal of the layers. Samples were examined nondestructively for density. Additionally, destructive uniaxial tensile tests were carried out on the modified samples and compared to the unmodified sample as a control for various mechanical properties. It is worth noting that the current approach was adapted for illustrating the impact of cyber altercations on properties of additively produced parts in a quantitative manner. It concurrently pointed towards the vulnerabilities of advanced manufacturing systems and a need for designing robust mitigation/defense mechanism against the cyber altercations.

Findings

Density, Young’s modulus and maximum strength steadily decreased with an increase in the number of missing layers, whereas a no clear trend was observed in the case of % elongation. Post tensile test observations of the sample cross-sections confirmed the successful removal of the layers from the samples by the designed method. As a result, the current work presented a cyber-attack model and its quantitative implications on the mechanical properties of 3D printed objects.

Originality/value

To the best of the authors’ knowledge, this is the original work from the team. It is currently not under consideration for publication in any other avenue. The paper provides quantitative approach of realizing impact of cyber intrusions on deteriorated performance of additively manufactured products. It also enlists important intrusion mechanisms relevant to additive manufacturing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 May 2023

Dheeraj Choppara, Alysia Garmulewicz and Joshua M. Pearce

This study aims to apply an open-source approach to protect the 3D printing industry from innovation stagnation due to broad patenting of obvious materials.

Abstract

Purpose

This study aims to apply an open-source approach to protect the 3D printing industry from innovation stagnation due to broad patenting of obvious materials.

Design/methodology/approach

To do this, first an open-source implementation of the first five conditions of an open-source algorithm developed to identify all obvious 3-D printing materials was implemented in Python, and the compound combinations of two and three constituents were tested on ten natural and synthetic compounds. The time complexity for combinations composed of two constituents and three constituents is determined to be O(n2) and O(n3), respectively.

Findings

Generating all combinations of materials available on the Chemical Abstracts Services (CAS) registry on the fastest processor on the market will require at least 73.9 h for the latter, but as the number of constituents increases the time needed becomes prohibitive (e.g. 3 constituents is 1.65 million years). To demonstrate how machine learning (ML) could help prioritize both theoretical as well as experimental efforts a three-part biomaterial consisting of water, agar and glycerin was used as a case study. A decision tree model is trained with the experimental data and is used to fill in missing physical properties, including Young's modulus and yield strength, with 84.9 and 85.1% accuracy, respectively.

Originality/value

The results are promising for an open-source system that can theoretically generate all possible combinations of materials for 3-D printing that can then be used to identify suitable printing material for specific business cases based on desired material properties.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 3000