Search results

1 – 10 of over 8000
Article
Publication date: 1 April 2024

Frank Ato Ghansah

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the…

Abstract

Purpose

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the high complexity of accurately representing and modelling the physics behind the DTs process. This study thus organises and consolidates the fragmented literature on DTs implementation for smart buildings at the facility management stage by exploring the enablers, applications and challenges and examining the interrelationships amongst them.

Design/methodology/approach

A systematic literature review approach is adopted to analyse and synthesise the existing literature relating to the subject topic.

Findings

The study revealed six main categories of enablers of DTs for smart building at the facility management stage, namely perception technologies, network technologies, storage technologies, application technologies, knowledge-building and design processes. Three substantial categories of DTs application for smart buildings were revealed at the facility management stage: efficient operation and service monitoring, efficient building energy management and effective smart building maintenance. Subsequently, the top four major challenges were identified as being “lack of a systematic and comprehensive reference model”, “real-time data integration”, “the complexity and uncertainty nature of real-time data” and “real-time data visualisation”. An integrative framework is finally proposed by examining the interactive relationship amongst the enablers, the applications and the challenges.

Practical implications

The findings could guide facility managers/engineers to fairly understand the enablers, applications and challenges when DTs are being implemented to improve smart building performance and achieve user satisfaction at the facility management stage.

Originality/value

This study contributes to the knowledge body on DTs by extending the scope of the existing studies to identify the enablers and applications of DTs for smart buildings at the facility management stage and the specific challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Article
Publication date: 21 August 2023

Swati Suravi

This paper aims to discuss innovations in the training and development practices of companies and delineate a new approach to training and development in the context of the hybrid…

1891

Abstract

Purpose

This paper aims to discuss innovations in the training and development practices of companies and delineate a new approach to training and development in the context of the hybrid workplace using the ADDIE and Kirkpatrick training models.

Design/methodology/approach

This paper discusses innovations in training and development in modern times and builds on the instructional training design approach or the ADDIE Model and the Kirkpatrick Model of training evaluation.

Findings

The paper presents new approaches to training and development in the context of the hybrid work model applying the ADDIE Model and the Kirkpatrick Model. These new approaches are both necessitated and also made possible due to the technological advancements of modern times.

Originality/value

With the rapid transition of companies to the hybrid model of work in recent times, several human resource management practices need to be transformed to suit the requirements of the new work model. Training and development is one function that needs to change in the hybrid work model to ensure its effectiveness. This paper analyses innovations in the training and development practices of companies and discusses new approaches while applying existing training models, the ADDIE and Kirkpatrick Models, to adapt to the changes associated with the hybrid work model.

Details

The Learning Organization, vol. 31 no. 1
Type: Research Article
ISSN: 0969-6474

Keywords

Article
Publication date: 27 November 2023

Dae-Young Kim and Scott W. Phillips

The present study examines the risk of citizens encountering police use of intermediate and deadly force, as opposed to using physical force, given a set of individual…

Abstract

Purpose

The present study examines the risk of citizens encountering police use of intermediate and deadly force, as opposed to using physical force, given a set of individual, situational and neighborhood variables.

Design/methodology/approach

The study uses data from 2003 to 2016 in the Dallas Open Data Portal. Two-level multinomial logistic regression is used to analyze the data.

Findings

The effects of citizen race differ across the types of police force. Overall, citizen race plays no significant role in the officer's decision to shoot firearms at citizens. However, there is evidence of intra-racial disparity in officer-involved shootings (OISs) between Hispanic citizens and officers. African American citizens are disproportionately exposed to display-but-don't shoot incidents, while Hispanic citizens have a lower risk of encountering police use of intermediate weapons.

Originality/value

The study helps to understand how citizen and officer race influence and interact across various types of police force. Implications of the results are offered in relation to relevant literature.

Details

Policing: An International Journal, vol. 47 no. 1
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 31 July 2023

Chong Xu, Pengbo Wang, Fan Yang, Shaohua Wang, Junping Cao and Xin Wang

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Abstract

Purpose

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Design/methodology/approach

Aiming at the multiphysical mechanism of the discharge ablation process, a multiphysical field model based on plasma energy deposition is established to analyze the discharge characteristics of the power cable bellows. The electrostatic field, plasma characteristics, energy deposition and temperature field are analyzed. The discharge experiment is also carried out for result validation.

Findings

The physical mechanism of the bellows ablative effect caused by partial discharge is studied. The results show that the electric field intensity between the aluminum sheath and the buffer layer easily exceeds the pressure resistance value of air breakdown. On the plasma surface of the buffer layer, the electron density is about 4 × 1,019/m3, and the average temperature of electrons is about 3.5 eV. The energy deposition analysis using the Monte Carlo method shows that the electron range in the plasma is very short. The release will complete within 10 nm, and it only takes 0.1 s to increase the maximum temperature of the buffer layer to more than 1,000 K, thus causing various thermal effects.

Originality/value

Its physical process involves the distortion of electric field, formation of plasma, energy deposition of electrons, and abrupt change of temperature field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 February 2024

Mohit Datt, Ajay Gupta, Sushendra Kumar Misra and Mahesh Gupta

The scope of this study is to explore and summarize the pool of dimensions, models and measurement techniques of service quality used in healthcare services and to propose a…

Abstract

Purpose

The scope of this study is to explore and summarize the pool of dimensions, models and measurement techniques of service quality used in healthcare services and to propose a comprehensive conceptual model for practitioners and researchers.

Design/methodology/approach

This research employs a comprehensive review of available literature by using multiple keywords on different electronic repositories using the recommendations of the PRISMA approach for the selection of articles. A critical analysis of available studies helped in compiling a list of core service quality dimensions in healthcare services.

Findings

This paper presents a comprehensive account of different dimensions and their measurement items used by various researchers to assess service quality in healthcare systems. Most of the researchers have used SERVQUAL model either in its original or modified form while the others have proposed and used totally different dimensions to assess the service quality in healthcare. Many dimensions are just an existing dimension of SERVQUAL that has undergone a name change while others are completely new. The dimensions used by many researchers have items drawn from more than one dimension of SERVQUAL model. The availability of so many dimensions and models adds to the confusion that researchers and practicing managers experience when determining the appropriate model to be used in their work. To mitigate this confusion, there is a need to develop a comprehensive model; the current work is an attempt to meet this need. Through our analysis, we identify four major service quality dimensions: clinical quality, infrastructural quality, relationship and managerial quality and propose a model named CIRMQUAL.

Originality/value

After exploring all available models in the domain of healthcare, this research presents the best possible areas to enhance the quality of healthcare services. It also enhances the research insights for academicians and working professionals by developing and proposing a comprehensive model for measuring healthcare service quality. The proposed model covers almost all of the service quality dimensions used by other researchers and will make the choice of dimensions/model easy for the future researchers/practitioners interested in measuring and improving the quality of services offered by their healthcare units. Such a comprehensive model has not been developed by any researcher thus far.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 February 2024

Rahim Şibil

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and the influence of different vegetation covers in different layers.

Design/methodology/approach

Ansys Fluent, a computational fluid dynamics software, was used to calculate the flow and turbulence characteristics using a three-dimensional, turbulent (k-e realizable), incompressible and steady-flow assumption, along with various near-wall treatment approaches (standard, scalable, non-equilibrium and enhanced) in the vegetated channel. The numerical study was validated concerning an experimental study conducted in the existing literature.

Findings

The numerical model successfully predicted experimental results with relative error rates below 10%. It was determined that nonequilibrium wall functions exhibited the highest predictive success in experiment Run 1, standard wall functions in experiment Run 2 and enhanced wall treatments in experiment Run 3. This study has found that plant growth significantly alters open channel flow. In the contact zones, the velocities and the eddy viscosity are low, while in the free zones they are high. On the other hand, the turbulence kinetic energy and turbulence eddy dissipation are maximum at the solid–liquid interface, while they are minimum at free zones.

Originality/value

This is the first study, to the best of the author’s knowledge, concerning the performance of different near-wall treatment approaches on the prediction of vegetation-covered open channel flow characteristics. And this study provides valuable insights to improve the hydraulic performance of open-channel systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 8000