Search results

1 – 10 of 90
Article
Publication date: 2 March 2015

Rosilene A. Kraft and Alvaro L. G. A. Coutinho

The purpose of this paper is to show benefits of deflated preconditioned conjugate gradients (CG) in the solution of transient, incompressible, viscous flows coupled with heat…

Abstract

Purpose

The purpose of this paper is to show benefits of deflated preconditioned conjugate gradients (CG) in the solution of transient, incompressible, viscous flows coupled with heat transfer.

Design/methodology/approach

This paper presents the implementation of deflated preconditioned CG as the iterative driver for the system of linearized equations for viscous, incompressible flows and heat transfer simulations. The De Sampaio-Coutinho particular form of the Petrov-Galerkin Generalized Least Squares finite element formulation is used in the discretization of the governing equations, leading to symmetric positive definite matrices, allowing the use of the CG solver.

Findings

The use of deflation techniques improves the spectral condition number. The authors show in a number of problems of coupled viscous flow and heat transfer that convergence is achieved with a lower number of iterations and smaller time.

Originality/value

This work addressed for the first time the use of deflated CG for the solution of transient analysis of free/forced convection in viscous flows coupled with heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1993

J. PETERA, V. NASSEHI and J.F.T. PITTMAN

A number of finite element formulations involving discontinuous weighting functions have been tested against analytic solutions for a steady scalar convection—diffusion problem at…

Abstract

A number of finite element formulations involving discontinuous weighting functions have been tested against analytic solutions for a steady scalar convection—diffusion problem at intermediate Peclet number, with a ‘hard’ downstream boundary condition. The emphasis is on extending these methods to isoparametric bilinear and biquadratic elements. In order to do this a procedure is given for the exact calculation of shape function Laplacians. Having confirmed the success of the Brooks—Hughes streamline upwind Petrov—Galerkin (SUPG) method for isoparametric bilinear elements, formulations for biquadratic elements are examined. Galerkin least squares offers little advantage over SUPG in the test problem. The generalized Galerkin method of Donea et al. gave excellent results, but because of concern over the possibility of cross‐streamline artificial diffusion in some cases, a strictly streamline formulation incorporating the optimal parameters of Donea et al. is proposed. This gave excellent results on a sufficiently refined mesh.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2001

J.Y. Cho and S.N. Atluri

The problems of shear flexible beams are analyzed by the MLPG method based on a locking‐free weak formulation. In order for the weak formulation to be locking‐free, the numerical…

Abstract

The problems of shear flexible beams are analyzed by the MLPG method based on a locking‐free weak formulation. In order for the weak formulation to be locking‐free, the numerical characteristics of the variational functional for a shear flexible beam, in the thin beam limit, are discussed. Based on these discussions a locking‐free local symmetric weak form is derived by changing the set of two dependent variables in governing equations from that of transverse displacement and total rotation to the set of transverse displacement and transverse shear strain. For the interpolation of the chosen set of dependent variables (i.e. transverse displacement and transverse shear strain) in the locking‐free local symmetric weak form, the recently proposed generalized moving least squares (GMLS) interpolation scheme is utilized, in order to introduce the derivative of the transverse displacement as an additional nodal degree of freedom, independent of the nodal transverse displacement. Through numerical examples, convergence tests are performed. To identify the locking‐free nature of the proposed method, problems of shear flexible beams in the thick beam limit and in the thin beam limit are analyzed, and the numerical results are compared with analytical solutions. The potential of using the truly meshless local Petrov‐Galerkin (MLPG) method is established as a new paradigm in totally locking‐free computational analyses of shear flexible plates and shells.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Afaq Salman Alwan

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with…

Abstract

Purpose

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with two-species, two chemicals and an additional chemotactic influence.

Design/methodology/approach

In the first proceeding, the space derivatives are discretized by using the direct meshless local Petrov–Galerkin method. This generates a nonlinear algebraic system of equations. The mentioned system is solved by using the Broyden’s method which this technique is not related to compute the Jacobian matrix.

Findings

This current work tries to bring forward a trustworthy and flexible numerical algorithm to simulate the system of predator–prey on the nonrectangular geometries.

Originality/value

The proposed numerical results confirm that the numerical procedure has acceptable results for the system of partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 July 2021

Abhishek Kumar Singh and Krishna Mohan Singh

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to…

Abstract

Purpose

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to solve steady-state heat conduction in 2-D as well as in 3-D domains.

Design/methodology/approach

The restarted version of the GMRES solver (with and without preconditioner) is applied to solve an asymmetric system of equations, arising due to the interpolating MLPG formulation. Its performance is compared with the biconjugate gradient stabilized (BiCGSTAB) solver on the basis of computation time and convergence behaviour. Jacobi and successive over-relaxation (SOR) methods are used as the preconditioners in both the solvers.

Findings

The results show that the GMRES solver outperforms the BiCGSTAB solver in terms of smoothness of convergence behaviour, while performs slightly better than the BiCGSTAB method in terms of Central processing Unit (CPU) time.

Originality/value

MLPG formulation leads to a non-symmetric system of algebraic equations. Iterative methods such as GMRES and BiCGSTAB methods are required for its solution for large-scale problems. This work presents the use of GMRES solver with the MLPG method for the very first time.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2011

Williams L. Nicomedes, Renato C. Mesquita and Fernando J.S. Moreira

The purpose of this paper is to solve both eigenvalue and boundary value problems coming from the field of quantum mechanics through the application of meshless methods…

Abstract

Purpose

The purpose of this paper is to solve both eigenvalue and boundary value problems coming from the field of quantum mechanics through the application of meshless methods, particularly the one known as meshless local Petrov‐Galerkin (MLPG).

Design/methodology/approach

Regarding eigenvalue problems, the authors show how to apply MLPG to the time‐independent Schrödinger equation stated in three dimensions. Through a special procedure, the numerical integration of weak forms is carried out only for internal nodes. The boundary conditions are enforced through a collocation method. The final result is a generalized eigenvalue problem, which is readily solved for the energy levels. An example of boundary value problem is described by the time‐dependent nonlinear Schrödinger equation. The weak forms are again stated only for internal nodes, whereas the same collocation scheme is employed to enforce the boundary conditions. The nonlinearity is dealt with by a predictor‐corrector scheme.

Findings

Results show that the combination of MLPG and a collocation scheme works very well. The numerical results are compared to those provided by analytical solutions, exhibiting good agreement.

Originality/value

The flexibility of MLPG is made explicit. There are different ways to obtain the weak forms, and the boundary conditions can be enforced through a number of ways, the collocation scheme being just one of them. The shape functions used to approximate the solution can incorporate modifications that reflect some feature of the problem, like periodic boundary conditions. The value of this work resides in the fact that problems from other areas of electromagnetism can be attacked by the very same ideas herein described.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2019

Rituraj Singh and Krishna Mohan Singh

The purpose of this paper is to assess the performance of the stabilised moving least squares (MLS) scheme in the meshless local Petrov–Galerkin (MLPG) method for heat conduction…

Abstract

Purpose

The purpose of this paper is to assess the performance of the stabilised moving least squares (MLS) scheme in the meshless local Petrov–Galerkin (MLPG) method for heat conduction method.

Design/methodology/approach

In the current work, the authors extend the stabilised MLS approach to the MLPG method for heat conduction problem. Its performance has been compared with the MLPG method based on the standard MLS and local coordinate MLS. The patch tests of MLS and modified MLS schemes have been presented along with the one- and two-dimensional examples for MLPG method of the heat conduction problem.

Findings

In the stabilised MLS, the condition number of moment matrix is independent of the nodal spacing and it is nearly constant in the global domain for all grid sizes. The shifted polynomials based MLS and stabilised MLS approaches are more robust than the standard MLS scheme in the MLPG method analysis of heat conduction problems.

Originality/value

The MLPG method based on the stabilised MLS scheme.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1999

H. De Gersem, D. Lahaye, S. Vandewalle and K. Hameyer

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov…

2101

Abstract

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov subspace methods are appropriate to solve such systems. The quasi minimal residual method combines a constant amount of work and storage per iteration step with a smooth convergence history. These advantages are obtained by building a quasi minimal residual approach on top of a Lanczos process to construct the search space. Solving the complex systems by transforming them to equivalent real ones of double dimension has to be avoided as such real systems have spectra that are less favourable for the convergence of Krylov‐based methods. Numerical experiments are performed on electromagnetic engineering problems to compare the quasi minimal residual method to the bi‐conjugate gradient method and the generalized minimal residual method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2019

Prashant Dineshbhai Vyas, Harish C. Thakur and Veera P. Darji

This paper aims to study nonlinear heat transfer through a longitudinal fin of three different profiles.

Abstract

Purpose

This paper aims to study nonlinear heat transfer through a longitudinal fin of three different profiles.

Design/methodology/approach

A truly meshfree method is used to undertake a nonlinear analysis to predict temperature distribution and heat-transfer rate.

Findings

A longitudinal fin of three different profiles, such as rectangular, triangular and concave parabolic, are analyzed. Temperature variation, along with the fin length and rate of heat transfer in steady state, under convective and convective-radiative environments has been demonstrated and explained. Moving least square (MLS) approximants are used to approximate the unknown function of temperature T(x) with Th(x). Essential boundary conditions are imposed using the penalty method. An iterative predictor–corrector scheme is used to handle nonlinearity.

Research limitations/implications

Modelling fin in a convective-radiative environment removes the assumption of no radiation condition. It also allows to vary convective heat-transfer coefficient and predict the closer values to the real problems for the corresponding fin surfaces.

Originality/value

The meshless local Petrov–Galerkin method can solve nonlinear fin problems and predict an accurate solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Seyi F. Olatoyinbo, Sarma L. Rani and Abdelkader Frendi

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic…

Abstract

Purpose

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic turbulence.

Design/methodology/approach

In an earlier paper, the FDV method was successfully demonstrated for simulations of laminar flows with speeds varying from low subsonic to high supersonic Mach numbers. In the current study, the FDV method, implemented in a finite element framework, is used to perform LESs of decaying isotropic turbulence. The FDV method is fundamentally derived from the Lax–Wendroff Scheme (LWS) by replacing the explicit time derivatives in LWS with a weighted combination of explicit and implicit time derivatives. The increased implicitness and the inherent numerical dissipation of FDV contribute to the scheme’s numerical stability and monotonicity. Understanding the role of numerical dissipation that is inherent to the FDV method is essential for the maturation of FDV into a robust scheme for LES of turbulent flows. Accordingly, three types of LES of decaying isotropic turbulence were performed. The first two types of LES utilized explicit subgrid scale (SGS) models, namely, the constant-coefficient Smagorinsky and dynamic Smagorinsky models. In the third, no explicit SGS model was employed; instead, the numerical dissipation inherent to FDV was used to emulate the role played by explicit SGS models. Such an approach is commonly known as Implicit LES (ILES). A new formulation was also developed for quantifying the FDV numerical viscosity that principally arises from the convective terms of the filtered Navier–Stokes equations.

Findings

The temporal variation of the turbulent kinetic energy and enstrophy and the energy spectra are presented and analyzed. At all grid resolutions, the temporal profiles of kinetic energy showed good agreement with t(−1.43) theoretical scaling in the fully developed turbulent flow regime, where t represents time. The energy spectra also showed reasonable agreement with the Kolmogorov’s k(−5/3) power law in the inertial subrange, with the spectra moving closer to the Kolmogorov scaling at higher-grid resolutions. The intrinsic numerical viscosity and the dissipation rate of the FDV scheme are quantified, both in physical and spectral spaces, and compared with those of the two SGS LES runs. Furthermore, at a finite number of flow realizations, the numerical viscosities of FDV and of the Streamline Upwind/Petrov–Galerkin (SUPG) finite element method are compared. In the initial stages of turbulence development, all three LES cases have similar viscosities. But, once the turbulence is fully developed, implicit LES is less dissipative compared to the two SGS LES runs. It was also observed that the SUPG method is significantly more dissipative than the three LES approaches.

Research limitations/implications

Just as any computational method, the limitations are based on the available computational resources.

Practical implications

Solving problems involving turbulent flows is by far the biggest challenge facing engineers and scientists in the twenty-first century, this is the road that the authors have embarked upon in this paper and the road ahead of is very long.

Social implications

Understanding turbulence is a very lofty goal and a challenging one as well; however, if the authors succeed, the rewards are limitless.

Originality/value

The derivation of an explicit expression for the numerical viscosity tensor of FDV is an important contribution of this study, and is a crucial step forward in elucidating the fundamental properties of the FDV method. The comparison of viscosities for the three LES cases and the SUPG method has important implications for the application of ILES approach for turbulent flow simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (90)

Content type

1 – 10 of 90