Search results

1 – 9 of 9
Article
Publication date: 16 May 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Afaq Salman Alwan

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with…

Abstract

Purpose

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with two-species, two chemicals and an additional chemotactic influence.

Design/methodology/approach

In the first proceeding, the space derivatives are discretized by using the direct meshless local Petrov–Galerkin method. This generates a nonlinear algebraic system of equations. The mentioned system is solved by using the Broyden’s method which this technique is not related to compute the Jacobian matrix.

Findings

This current work tries to bring forward a trustworthy and flexible numerical algorithm to simulate the system of predator–prey on the nonrectangular geometries.

Originality/value

The proposed numerical results confirm that the numerical procedure has acceptable results for the system of partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2024

Abhishek Kumar Singh and Krishna Mohan Singh

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and…

Abstract

Purpose

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.

Design/methodology/approach

The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.

Findings

Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.

Originality/value

Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2024

Douglas Ramalho Queiroz Pacheco

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Abstract

Purpose

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Design/methodology/approach

We use integration by parts twice to shift smoothness requirements to the test functions, thereby allowing low-regularity data and solutions.

Findings

Various conforming discretisations are presented and tested, with numerical results indicating good accuracy and stability in different types of problems.

Originality/value

This is one of the first articles to propose and test concrete discretisations for very weak variational formulations in primal form. The numerical results, which include a problem based on real MRI data, indicate the potential of very weak finite element methods for tackling problems with low regularity.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 February 2023

Fatih Selimefendigil and Hakan Oztop

The purpose of this study is to examine the effects of using discrete and continuous porous layers on the convective heat transfer improvement for multiple slot jet impingement…

98

Abstract

Purpose

The purpose of this study is to examine the effects of using discrete and continuous porous layers on the convective heat transfer improvement for multiple slot jet impingement onto a flat surface under magnetic field.

Design/methodology/approach

In the domains which are separated by the porous layers, uniform magnetic field with different strengths is used and as the solution technique finite element method is used. The numerical study is conducted considering different values of parameters: Reynolds number (250–1000), strength of magnetic field in different domains (Hartmann number between 0 and 20), permeability of discrete or continuous layers (Darcy number between 105 and 102) and number of layers in discrete case (2–10). Artificial neural network is used for performance estimation of systems equipped with different types of porous layers.

Findings

It is observed that significant differences occur in the local Nu between the discrete and continuous layer case, especially at lower Re, while peak Nu value is 77% higher in discrete layer configurations as compared to continuous one at Re = 250. Upper domain magnetic field results in average Nu enhancement, while the trend is opposite for the lower domain magnetic field strength. The increment amount becomes 10%, while the reduction amount is obtained as 38% at the highest magnetic field strengths. The permeability of layers in both cases and number of layers in discrete porous layer case provide effective solution for the cooling performance control. A modeling approach based on artificial neural networks provides fast thermal performance estimations of multiple impinging jets equipped with discrete and continuous porous layers.

Originality/value

Outcomes of the study are useful in development and optimization of new cooling systems in many thermal engineering systems encountered in photovoltaic panels, micro-electro-mechanical systems, metal processing and many others.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2022

Massicilia Dahmani, Abdelghani Seghir, Nabil Issaadi and Ouali Amiri

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified…

Abstract

Purpose

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified mechanical single-degree-of-freedom system allowing to reproduce the heave movements is first developed, then the obtained lumped characteristics are used for elastic analysis of the floating body in heave motion.

Design/methodology/approach

First, a two-dimensional numerical model of a rigid floating body in a wave tank is implemented under DualSPHysics, an open source computational fluid dynamics (CFD) code based on smoothed particle hydrodynamics method. Then, the obtained results are exploited to derive an equivalent mechanical mass-spring-damper model. Finally, estimated equivalent characteristics are used in a structural finite element modeling of the considered body assuming elastic behavior.

Findings

Obtained results concerning the floating body displacements are represented and validated using existing experimental data in the literature. Wave forces acting on the body are also evaluated. It was found that for regular waves, it is possible to replace the complex CFD refined model by an equivalent simplified mechanical system which makes easy the use of structural finite element analysis.

Originality/value

The originality of this work lies in the proposed procedure to evaluate the mechanical properties of the equivalent elastic system. This allows to couple two different software tools and to take advantages of their features.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2023

Mohammad Ivan Azis

Two-dimensional (2D) problems are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are considered. The problems are transformed…

Abstract

Purpose

Two-dimensional (2D) problems are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are considered. The problems are transformed into a boundary-only integral equation which can be solved numerically using a standard boundary element method (BEM). Some examples are solved to show the validity of the analysis and examine the accuracy of the numerical method.

Design/methodology/approach

The 2D problems which are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are solved using a combined BEM and Laplace transform. The time–space dependent coefficient equation is reduced to a time-dependent coefficient equation using an analytical transformation. Then, the time-dependent coefficient equation is Laplace transformed to get a constant coefficient equation, which can be written as a boundary-only integral equation. By utilizing a BEM, this integral equation is solved to find numerical solutions to the problems in the frame of the Laplace transform. These solutions are then inversely transformed numerically to obtain solutions in the original time–space frame.

Findings

The main finding of this research is the derivation of a boundary-only integral equation for the solutions of initial-boundary value problems governed by a modified-Helmholtz equation of time–space dependent coefficients for anisotropic functionally graded materials with time-dependent properties.

Originality/value

The originality of the research lies on the time dependency of properties of the functionally graded material under consideration.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2023

Naseer H. Hamza, Maathe A. Theeb and Mikhail A. Sheremet

The purpose of this research is to scrutinize numerically the effect of internally equipped nonuniformly heated plate within wavy cavity on heat transfer enhancement in the case…

Abstract

Purpose

The purpose of this research is to scrutinize numerically the effect of internally equipped nonuniformly heated plate within wavy cavity on heat transfer enhancement in the case of hybrid nanofluid flow.

Design/methodology/approach

The two-dimensional, steady, laminar, Newtonian and incompressible thermo-fluid flow phenomenon has been investigated numerically using Galerkin method. The considered parameters including number of waves (3–7), nondimensional length of heated plate (0.4–0.8), plate inclination angle (0º–90º), Rayleigh number (103–106) and concentration of nanoparticles (0.0–2.0) have been investigated in combination with involving hybrid nanofluid as a working fluid to augment thermal properties effectively. Two vertical wavy boundaries have low temperature whilst the other horizontal surfaces are adiabatic.

Findings

The Rayleigh number has a moderate impact on the values of Nusselt number, and skin friction parameter varied from 103 to 105 while it strongly affects them for Ra = 106, where Nu is roughly doubled (approximately 200%) in comparison with its value at Ra = 105 for all cases. Stream function is changed by the orientation of heated plate and Ra values, where its maximum value was 12.9 in horizontal position and 13.6 at vertical one. Results indicate a separation from the wavy walls at low Ra which tends to keep stagnation region at the deep parts of corrugated walls contrary the case at high Ra. The behavior of the isotherm contours tends to be distributed more evenly at lower values of Ra and angle of inclination lower than 45º. The resulting properties from mixing two materials for hybrid nanofluid into one base fluid show a good compromise between thermal capacity and heat conductivity, which is improved by 16% that leads to enhanced convective energy transport in the wavy chamber.

Originality/value

The originality of this work is the considered physical phenomenon where an influence of internal nonuniformly heated plate has been studied for the irregular geometry filled with a hybrid nanofluid. Such analysis allows defining the possible heat transfer enhancement for such an irregular cavity and inner heated plate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 9 of 9