Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 19 March 2018

Petr Slobodian, Pavel Riha, Robert Olejnik and Jiri Matyas

The synergistic effect of functionalization of multi-walled carbon nanotubes (CNT) using KMnO4 oxidation and initial tensile deformation on the electrical resistance of…

Abstract

Purpose

The synergistic effect of functionalization of multi-walled carbon nanotubes (CNT) using KMnO4 oxidation and initial tensile deformation on the electrical resistance of nanotube network/polyurethane composite subjected to elongation was studied.

Design/methodology/approach

Though the initial deformation irreversibly changed the arrangement of carbon nanotube network, subsequent cyclic elongation confirmed stable resistance values. The increased strain-dependent resistance of stimulated nanotube network/polyurethane composite was demonstrated by monitoring vibration of tambour leather after a bead impact and finger flexion.

Findings

The results showed a tenfold composite resistance increase for the composite prepared from KMnO4 oxidized nanotubes, quantified by a so-called gauge factor, from a value of about 20 in comparison to the network prepared from pristine nanotubes. This is a substantial increase, which ranks the stimulated composite among materials with the highest electromechanical response.

Originality/value

The results in this paper are new and have not been published yet. The paper combines different ideas which are developed together. It presents a new concept of synergistic effect of CNT oxidation and application of pre-strain simulation. Oxidation and pre-strain increases by several times the sensitivity of the tested composites which are predetermined for use as strain sensors of various sizes and shapes.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 1 of 1