Search results

1 – 10 of 265
Article
Publication date: 7 December 2021

Sreelakshmi D. and Syed Inthiyaz

Pervasive health-care computing applications in medical field provide better diagnosis of various organs such as brain, spinal card, heart, lungs and so on. The purpose of this…

Abstract

Purpose

Pervasive health-care computing applications in medical field provide better diagnosis of various organs such as brain, spinal card, heart, lungs and so on. The purpose of this study is to find brain tumor diagnosis using Machine learning (ML) and Deep Learning(DL) techniques. The brain diagnosis process is an important task to medical research which is the most prominent step for providing the treatment to patient. Therefore, it is important to have high accuracy of diagnosis rate so that patients easily get treatment from medical consult. There are many earlier investigations on this research work to diagnose brain diseases. Moreover, it is necessary to improve the performance measures using deep and ML approaches.

Design/methodology/approach

In this paper, various brain disorders diagnosis applications are differentiated through following implemented techniques. These techniques are computed through segment and classify the brain magnetic resonance imaging or computerized tomography images clearly. The adaptive median, convolution neural network, gradient boosting machine learning (GBML) and improved support vector machine health-care applications are the advance methods used to extract the hidden features and providing the medical information for diagnosis. The proposed design is implemented on Python 3.7.8 software for simulation analysis.

Findings

This research is getting more help for investigators, diagnosis centers and doctors. In each and every model, performance measures are to be taken for estimating the application performance. The measures such as accuracy, sensitivity, recall, F1 score, peak-to-signal noise ratio and correlation coefficient have been estimated using proposed methodology. moreover these metrics are providing high improvement compared to earlier models.

Originality/value

The implemented deep and ML designs get outperformance the methodologies and proving good application successive score.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 20 September 2023

Mudit Gera, Dharminder Kumar Batra and Vinod Kumar

This paper aims to understand the scholarly contributions to mobile advertising by analyzing the publishing trend from 2001 to 2022 from the documents indexed in the Scopus…

Abstract

Purpose

This paper aims to understand the scholarly contributions to mobile advertising by analyzing the publishing trend from 2001 to 2022 from the documents indexed in the Scopus database.

Design/methodology/approach

A total of 348 documents were selected for analysis published between 2001 and 2022. The garnered data was examined using a bibliometric domain mapping analysis technique using computer-aided software R and VOSviewer and manually exploring the articles.

Findings

The results of this study discover the most prolific authors in the mobile advertising domain and other seminal works carried out by productive researchers in the field of mobile advertising. The journals in which most instrumental research studies have been published are also identified. Moreover, the co-citation, bibliometric coupling and co-occurrence analysis of literature are also carried out to draw themes concerning mobile advertising research that have been identified and categorized.

Research limitations/implications

This research analyzed a singular, exclusive database, “Scopus,” which limited the sectoral scope of publications. Since the present research uses bibliometric analysis, these studies cannot conduct sentiment analysis of the chosen studies.

Practical implications

Marketing professionals looking after technological advancements may use this study to understand the broad scope of mobile advertising applicability across diverse domains and discuss the trade-offs that may address significant bottlenecks in mobile advertising applications.

Originality/value

To the best of the authors’ knowledge, this paper is one of the latest attempts in recent times to understand the research work in mobile advertising using a bibliometric domain analysis approach.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Abstract

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Article
Publication date: 5 September 2023

Zhenghao Tong, Soyeong Lee and Hongjoo Woo

This study aims to examine the effects of perceived product–brand fit and brand type on consumer evaluations of wearable smart masks’ technological, aesthetic and social…

Abstract

Purpose

This study aims to examine the effects of perceived product–brand fit and brand type on consumer evaluations of wearable smart masks’ technological, aesthetic and social attributes and how these affect consumers’ attitudes and intentions to use.

Design/methodology/approach

Through an experimental approach, a total of 240 US consumers’ evaluations of smart masks are compared according to perceived product–brand fit (high vs low) and brand type (electronics vs fashion).

Findings

The results showed that high perceived product–brand fit increases consumers’ evaluations, while brand type did not significantly affect consumers’ evaluations. Among various attributes, social acceptability had the greatest influence on consumers’ attitude and intention to use. Perceived ease of use, however, positively influenced attitude but negatively influenced intention to use.

Originality/value

As consumers’ interest in smart health-care wearables increases and air pollution is a serious issue across countries, research on wearable smart masks is being facilitated. Smart masks refer to the digitalized, reusable wearable masks that provide protection and health-care functions. However, their market penetration is still limited. To close this gap between smart mask technology and the market, this study examines how perceived fit and brand type can be used to enhance consumer evaluations.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 July 2022

Mukesh Soni, Nihar Ranjan Nayak, Ashima Kalra, Sheshang Degadwala, Nikhil Kumar Singh and Shweta Singh

The purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage.

Abstract

Purpose

The purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage.

Design/methodology/approach

The new greedy algorithm is proposed to balance the energy consumption in edge computing.

Findings

The new greedy algorithm can balance energy more efficiently than the random approach by an average of 66.59 percent.

Originality/value

The results are shown in this paper which are better as compared to existing algorithms.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 March 2024

Anil Kumar Goswami, Anamika Sinha, Meghna Goswami and Prashant Kumar

This study aims to extend and explore patterns and trends of research in the linkage of big data and knowledge management (KM) by identifying growth in terms of numbers of papers…

Abstract

Purpose

This study aims to extend and explore patterns and trends of research in the linkage of big data and knowledge management (KM) by identifying growth in terms of numbers of papers and current and emerging themes and to propose areas of future research.

Design/methodology/approach

The study was conducted by systematically extracting, analysing and synthesizing the literature related to linkage between big data and KM published in top-tier journals in Web of Science (WOS) and Scopus databases by exploiting bibliometric techniques along with theory, context, characteristics, methodology (TCCM) analysis.

Findings

The study unfolds four major themes of linkage between big data and KM research, namely (1) conceptual understanding of big data as an enabler for KM, (2) big data–based models and frameworks for KM, (3) big data as a predictor variable in KM context and (4) big data applications and capabilities. It also highlights TCCM of big data and KM research through which it integrates a few previously reported themes and suggests some new themes.

Research limitations/implications

This study extends advances in the previous reviews by adding a new time line, identifying new themes and helping in the understanding of complex and emerging field of linkage between big data and KM. The study outlines a holistic view of the research area and suggests future directions for flourishing in this research area.

Practical implications

This study highlights the role of big data in KM context resulting in enhancement of organizational performance and efficiency. A summary of existing literature and future avenues in this direction will help, guide and motivate managers to think beyond traditional data and incorporate big data into organizational knowledge infrastructure in order to get competitive advantage.

Originality/value

To the best of authors’ knowledge, the present study is the first study to go deeper into understanding of big data and KM research using bibliometric and TCCM analysis and thus adds a new theoretical perspective to existing literature.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 22 June 2022

Shubangini Patil and Rekha Patil

Until now, a lot of research has been done and applied to provide security and original data from one user to another, such as third-party auditing and several schemes for…

Abstract

Purpose

Until now, a lot of research has been done and applied to provide security and original data from one user to another, such as third-party auditing and several schemes for securing the data, such as the generation of the key with the help of encryption algorithms like Rivest–Shamir–Adleman and others. Here are some of the related works that have been done previously. Remote damage control resuscitation (RDCR) scheme by Yan et al. (2017) is proposed based on the minimum bandwidth. By enabling the third party to perform the verification of public integrity. Although it supports the repair management for the corrupt data and tries to recover the original data, in practicality it fails to do so, and thus it takes more computation and communication cost than our proposed system. In a paper by Chen et al. (2015), using broadcast encryption, an idea for cloud storage data sharing has been developed. This technique aims to accomplish both broadcast data and dynamic sharing, allowing users to join and leave a group without affecting the electronic press kit (EPK). In this case, the theoretical notion was true and new, but the system’s practicality and efficiency were not acceptable, and the system’s security was also jeopardised because it proposed adding a member without altering any keys. In this research, an identity-based encryption strategy for data sharing was investigated, as well as key management and metadata techniques to improve model security (Jiang and Guo, 2017). The forward and reverse ciphertext security is supplied here. However, it is more difficult to put into practice, and one of its limitations is that it can only be used for very large amounts of cloud storage. Here, it extends support for dynamic data modification by batch auditing. The important feature of the secure and efficient privacy preserving provable data possession in cloud storage scheme was to support every important feature which includes data dynamics, privacy preservation, batch auditing and blockers verification for an untrusted and an outsourced storage model (Pathare and Chouragadec, 2017). A homomorphic signature mechanism was devised to prevent the usage of the public key certificate, which was based on the new id. This signature system was shown to be resistant to the id attack on the random oracle model and the assault of forged message (Nayak and Tripathy, 2018; Lin et al., 2017). When storing data in a public cloud, one issue is that the data owner must give an enormous number of keys to the users in order for them to access the files. At this place, the knowledge assisted software engineering (KASE) plan was publicly unveiled for the first time. While sharing a huge number of documents, the data owner simply has to supply the specific key to the user, and the user only needs to provide the single trapdoor. Although the concept is innovative, the KASE technique does not apply to the increasingly common manufactured cloud. Cui et al. (2016) claim that as the amount of data grows, distribution management system (DMS) will be unable to handle it. As a result, various proven data possession (PDP) schemes have been developed, and practically all data lacks security. So, here in these certificates, PDP was introduced, which was based on bilinear pairing. Because of its feature of being robust as well as efficient, this is mostly applicable in DMS. The main purpose of this research is to design and implement a secure cloud infrastructure for sharing group data. This research provides an efficient and secure protocol for multiple user data in the cloud, allowing many users to easily share data.

Design/methodology/approach

The methodology and contribution of this paper is given as follows. The major goal of this study is to design and implement a secure cloud infrastructure for sharing group data. This study provides an efficient and secure protocol for multiple user data in cloud, allowing several users to share data without difficulty. The primary purpose of this research is to design and implement a secure cloud infrastructure for sharing group data. This research develops an efficient and secure protocol for multiple user data in the cloud, allowing numerous users to exchange data without difficulty. Selection scheme design (SSD) comprises two algorithms; first algorithm is designed for limited users and algorithm 2 is redesigned for the multiple users. Further, the authors design SSD-security protocol which comprises a three-phase model, namely, Phase 1, Phase 2 and Phase 3. Phase 1 generates the parameters and distributes the private key, the second phase generates the general key for all the users that are available and third phase is designed to prevent the dishonest user to entertain in data sharing.

Findings

Data sharing in cloud computing provides unlimited computational resources and storage to enterprise and individuals; moreover, cloud computing leads to several privacy and security concerns such as fault tolerance, reliability, confidentiality and data integrity. Furthermore, the key consensus mechanism is fundamental cryptographic primitive for secure communication; moreover, motivated by this phenomenon, the authors developed SSDmechanismwhich embraces the multiple users in the data-sharing model.

Originality/value

Files shared in the cloud should be encrypted for security purpose; later these files are decrypted for the users to access the file. Furthermore, the key consensus process is a crucial cryptographic primitive for secure communication; additionally, the authors devised the SSD mechanism, which incorporates numerous users in the data-sharing model, as a result of this phenomena. For evaluation of the SSD method, the authors have considered the ideal environment of the system, that is, the authors have used java as a programming language and eclipse as the integrated drive electronics tool for the proposed model evaluation. Hardware configuration of the model is such that it is packed with 4 GB RAM and i7 processor, the authors have used the PBC library for the pairing operations (PBC Library, 2022). Furthermore, in the following section of this paper, the number of users is varied to compare with the existing methodology RDIC (Li et al., 2020). For the purposes of the SSD-security protocol, a prime number is chosen as the number of users in this work.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 23 April 2024

Fahim Ullah, Oluwole Olatunji and Siddra Qayyum

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning…

Abstract

Purpose

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning from discipline-specific experiences, this paper articulates recent advancements in the knowledge and concepts of G-IoT in relation to the construction and smart city sectors. It provides a scoping review for G-IoT as an overlooked dimension. Attention was paid to modern circularity, cleaner production and sustainability as key benefits of G-IoT adoption in line with the United Nations’ Sustainable Development Goals (UN-SDGs). In addition, this study also investigates the current application and adoption strategies of G-IoT.

Design/methodology/approach

This study uses the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) review approach. Resources are drawn from Scopus and Web of Science repositories using apt search strings that reflect applications of G-IoT in the built environment in relation to construction management, urban planning, societies and infrastructure. Thematic analysis was used to analyze pertinent themes in the retrieved articles.

Findings

G-IoT is an overlooked dimension in construction and smart cities so far. Thirty-three scholarly articles were reviewed from a total of 82 articles retrieved, from which five themes were identified: G-IoT in buildings, computing, sustainability, waste management and tracking and monitoring. Among other applications, findings show that G-IoT is prominent in smart urban services, healthcare, traffic management, green computing, environmental protection, site safety and waste management. Applicable strategies to hasten adoption include raising awareness, financial incentives, dedicated work approaches, G-IoT technologies and purposeful capacity building among stakeholders. The future of G-IoT in construction and smart city research is in smart drones, building information modeling, digital twins, 3D printing, green computing, robotics and policies that incentivize adoption.

Originality/value

This study adds to the normative literature on envisioning potential strategies for adoption and the future of G-IoT in construction and smart cities as an overlooked dimension. No previous study to date has reviewed pertinent literature in this area, intending to investigate the current applications, adoption strategies and future direction of G-IoT in construction and smart cities. Researchers can expand on the current study by exploring the identified G-IoT applications and adoption strategies in detail, and practitioners can develop implementation policies, regulations and guidelines for holistic G-IoT adoption.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 July 2022

Pradyumna Kumar Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, Chandra Sekhar Reddy L. and S.V. Akilandeeswari

This paper aims to provide the security and privacy for Byzantine clients from different types of attacks.

Abstract

Purpose

This paper aims to provide the security and privacy for Byzantine clients from different types of attacks.

Design/methodology/approach

In this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing.

Findings

By using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped.

Originality/value

By using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 265