Search results

1 – 10 of 65
Article
Publication date: 1 December 1996

P.M. Leplat, B. Lemaire‐Semail, S. Clenet and F. Piriou

Proposes to compare two models ‐ finite element method and “magnetic” equivalent scheme ‐ for numerical modelling of electromagnetic systems. Both these approaches coupled with…

306

Abstract

Proposes to compare two models ‐ finite element method and “magnetic” equivalent scheme ‐ for numerical modelling of electromagnetic systems. Both these approaches coupled with electric circuit equations take into account saturation effects. Uses a machine of 5.5kW as a model to show the validity of these approaches. Compares the results obtained from numerical calculation with experimental ones.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 15 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2008

Andrzej Demenko and Dorota Stachowiak

The aim of the paper is to find the effective algorithms of electromagnetic torque calculation.

Abstract

Purpose

The aim of the paper is to find the effective algorithms of electromagnetic torque calculation.

Design/methodology/approach

The proposed algorithms are related to the analysis of electrical machines using the methods of equivalent magnetic networks. The presented permeance and reluctance networks are formulated using FE methods. Attention is paid to the algorithms of electromagnetic torque calculation for 3D models. The virtual work principle is applied. The principle is adapted to the discrete network models. The network representations of Maxwell's stress formula are given.

Findings

The proposed method of electromagnetic torque calculation can be successfully applied in the 3D calculations of rotating electrical machines. It can be used for scalar and vector potential formulations. The obtained results and their comparison with the measurements show that the method is sufficiently accurate.

Originality/value

The presented formulas of electromagnetic torque calculation are universal and can be successfully applied in the FE analysis of electrical machines using nodal and edge elements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 July 2020

Wasiq Ullah, Faisal Khan and Muhammad Umair

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a…

Abstract

Purpose

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a powerful tool for accurate modelling and electromagnetic performance analysis of electric machines. However, computational complexity, magnetic saturation, complex stator structure and time consumption compel researchers to adopt alternate analytical model for initial design of electric machine especially flux switching machines (FSMs).

Design/methodology/approach

In this paper, simplified lumped parameter magnetic equivalent circuit (LPMEC) model is presented for newly developed segmented PM consequent pole flux switching machine (SPMCPFSM). LPMEC model accounts influence of all machine parts for quarter of machine which helps to reduce computational complexity, computational time and drive storage without affecting overall accuracy. Furthermore, inductance calculation is performed in the rotor and stator frame of reference for accurate estimation of the self-inductance, mutual inductance and dq-axis inductance profile using park transformation.

Findings

The developed LPMEC model is validated with corresponding FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy of ∼98.23%, and park transformation precisely estimates the inductance profile in rotor and stator frame of reference.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The proposed SPMCPFSM enhance electromagnetic performance owing to partitioned PMs configuration which make it different than conventional designs. Moreover, the developed LPMEC model reduces computational time by solving quarter of machine.

Article
Publication date: 12 August 2021

Wasiq Ullah, Faisal Khan, Muhammad Umair and Bakhtiar Khan

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress…

Abstract

Purpose

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress tensor (MST) method and sub-domain modelling for design of segmented PM(SPM) consequent pole flux switching machine (SPMCPFSM). Electric machines, especially flux switching machines (FSMs), are accurately modeled using numerical-based finite element analysis (FEA) tools; however, despite of expensive hardware setup, repeated iterative process, complex stator design and permanent magnet (PM) non-linear behavior increases computational time and complexity.

Design/methodology/approach

This paper reviews various alternate analytical methodologies for electromagnetic performance calculation. In above-mentioned analytical methodologies, no-load phase flux linkage is performed using LPMEC, magnetic co-energy for cogging torque, LE for magnetic flux density (MFD) components, i.e. radial and tangential and MST for instantaneous torque. Sub-domain model solves electromagnetic performance, i.e. MFD and torque behaviour.

Findings

The reviewed analytical methodologies are validated with globally accepted FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy. In comparison of analytical methodologies, analysis reveals that sub-domain model not only get rid of multiples techniques for validation purpose but also provide better results by accounting influence of all machine parts which helps to reduce computational complexity, computational time and drive storage with overall accuracy of ∼99%. Furthermore, authors are confident to recommend sub-domain model for initial design stage of SPMCPFSM when higher accuracy and low computational cost are primal requirements.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The SPMCPFSM enhances electromagnetic performance owing to segmented PMs configuration which makes it different than conventional designs. Moreover, developed analytical methodologies for SPMCPFSM reduce computational time compared with that of FEA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2009

Jawad Ahmed Farooq, Abdesslem Djerdir and Abdellatif Miraoui

The purpose of this paper is to present a novel method to identify demagnetization faults in the magnet of a permanent magnet synchronous machine (PMSM) using some externally…

Abstract

Purpose

The purpose of this paper is to present a novel method to identify demagnetization faults in the magnet of a permanent magnet synchronous machine (PMSM) using some externally measurable parameter.

Design/methodology/approach

The machine is modelled by using permeance network theory. The new feature introduced in the permeance network is the subdivision of magnets into segments, modelled as bidirectional elements. These bidirectional elements allow taking into account the effect of one element on the other. To detect the demagnetization faults, a gradient‐based algorithm is also developed. This algorithm uses the permeance network model of the PMSM and measurement data of some parameter to find the distribution of remanent induction in the magnet segments.

Findings

The methodology presented is able to detect the demagnetization fault using an external data. The measurement data in this paper is obtained through finite element simulations. The fast and accurate convergence of the algorithm makes the model to find its place in magnet fault diagnosis. Results for different magnet fault types have been presented.

Originality/value

This new approach to detect demagnetization fault can serve as a step towards development of better fault‐detection algorithms and fault‐tolerant control schemes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

M.F.J. Kremers, J.J.H. Paulides, T.E. Motoasca and E.A. Lomonova

The purpose of this paper is to discuss the performance of a proposed machine design for an in‐wheel motor with the required torque‐speed characteristic.

Abstract

Purpose

The purpose of this paper is to discuss the performance of a proposed machine design for an in‐wheel motor with the required torque‐speed characteristic.

Design/methodology/approach

Calculation of the winding factor of the machine with the star of slots theory is performed first. The field weakening capability of the machine is investigated and the operating speed range is determined. The tooth contour modeling method for calculating the performance of the machine with a limited number of elements is introduced. The method is used to construct two models of different complexity and the results obtained with the models are compared with the results obtained by finite element models.

Findings

The 14 pole 12 slot in‐wheel PMSM discussed in this paper is able to meet the stringent performance requirements. The results obtained with the tooth contour models show good agreement with the results obtained with finite element models despite the limited number of elements. Increasing the number of elements in the model allows for modeling of armature reaction and increases the accuracy of the model.

Research limitations/implications

This work can be continued with investigating the possibilities to model the armature reaction more accurately.

Originality/value

This paper proposes a modeling method which accurately describes the performance of a PMSM with limited number of elements. With this method, the calculation procedure can be easily used for optimization of the machine design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 November 2010

Christopher R. Lines, Willem A. Cronjé and Brian Wigdorowitz

The purpose of this paper is to devise a magnetic field modelling approach suitable for simulating the transient behaviour of a class of electromagnetic systems (particularly…

Abstract

Purpose

The purpose of this paper is to devise a magnetic field modelling approach suitable for simulating the transient behaviour of a class of electromagnetic systems (particularly linear synchronous motors).

Design/methodology/approach

The classical 2D magnetic equivalent circuit (MEC) approach is extended by separately accounting for leakage flux from highly permeable polygonal regions (where the MEC approach is most applicable). It capitalises on the computational efficiency of an MEC approach for regions where the flux can be assumed to be uniformly channelled through a coarse network of “flux tubes” and accounts for leakage flux from these regions by introducing mutual permeances. These mutual permeances are geometry dependent and can be calculated upfront using a surface‐current representation of the magnetomotive force attributed to each flux tube.

Findings

As demonstrated with a simple example, the magnetic field solution converges with an increasing subdivision of flux tubes, yielding a transparent trade‐off between simulation time and accuracy.

Research limitations/implications

Using Schwarz‐Christoffel mapping to approximate the mutual permeances is restrictive and introduces unnecessary error. Hence, the use of finite element or boundary element methods to obtain these permeances is under investigation. Furthermore, it is expected that introducing 2D flux tube elements for junction regions would be beneficial.

Originality/value

A novel approach is presented that aims to improve the accuracy of a traditional MEC solution, whilst retaining its computational advantage for the flux that is well channelled. The method has particular merit for the dynamic modelling of linear motors, where the machine's behaviour is dominated by the flux bridging the air gap.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

C. Delmotte‐Delforge, H. Hénao, G. Ekwe, P. Brochet and G‐A. Capolino

This paper presents two modeling methods applied to induction machine study in order to construct a tool for diagnosis purpose. The first method is based on permeance networks

Abstract

This paper presents two modeling methods applied to induction machine study in order to construct a tool for diagnosis purpose. The first method is based on permeance networks using finite element analysis to calculate magnetic equivalent circuit parameters. The second method consists of the elaboration of an electric equivalent circuit obtained from minimal geometrical knowledge on stator and rotor parts of the machine on study. These two methods are presented and their results are compared with respect to the normal and rotor broken bar operation. For this study, a simple structure induction machine with three stator coils and six rotor bars has been investigated. The presented results concern stator currents and electromagnetic torque for the rated speed and the magnitude of the stator current harmonic components have been compared.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

Eric Duckler Kenmoe Fankem, Noureddine Takorabet, Farid Meibody‐Tabar and François Michel Sargos

The purpose of this paper is to present a coupled finite element (FE) – reluctance network model for a hybrid step motor.

Abstract

Purpose

The purpose of this paper is to present a coupled finite element (FE) – reluctance network model for a hybrid step motor.

Design/methodology/approach

The equivalent permeances of the air‐gap are determined by 2D nonlinear FE computations. The results of the 2D model are used in a 3D analytical model. A spectral decomposition and a nonlinear fitting of the amplitudes of the permeance harmonics are performed to account for both saturation and high order harmonic effects. The nonlinear resolution of the circuit equations is performed with an iterative process. The performances are determined by using the principle of virtual works.

Findings

The method is validated with a 2D FE computation and then applied to a 3D hybrid step motor.

Originality/value

The proposed method enables fast and efficient computations of the performances of hybrid stepping motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

Vyacheslav A. Kuznetsov and Pascal Brochet

A general approach to the formation of magnetic equivalent circuit describing the magnetic process inside the electric machines is proposed. This formation is based on tooth…

Abstract

A general approach to the formation of magnetic equivalent circuit describing the magnetic process inside the electric machines is proposed. This formation is based on tooth contour method. Coupling with external and internal electric circuits of electric machines is emphasized as well as mechanical coupling with load. The resulting model allows the simulation of electromechanical converter, but with the number of element being fewer by several orders compared to traditional finite element models. Non‐linearity such as saturation or electronic switch is taken into account. General equations for the magnetic fields and electric circuits of electrical machines are written using a common basis – the nodal potential method. The whole process is illustrated on the simulation of a claw poles alternator compared with measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 65