Search results

1 – 10 of 228
Article
Publication date: 26 September 2019

Paluru Sreedevi, P. Sudarsana Reddy and Mikhail Sheremet

The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through…

Abstract

Purpose

The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through a wedge occupied with water–TiO2 and water–Al2O3 made nanofluid by considering velocity, temperature and concentration slip conditions in present investigation.

Design/methodology/approach

Using acceptable similarity transformations, the prevailing partial differential equations have been altered into non-linear ordinary differential equations and are demonstrated by the diverse thermophysical parameters. The mathematical model is solved numerically by implementing Galarkin finite element method and the outcomes are shown in tables and graphs.

Findings

The temperature and concentration fields impede as magnetic field parameter improves in both water–Al2O3 and water–TiO2 nanofluid. While there is contradiction in the velocity field as the values of magnetic field parameter rises in both nanofluids. The non-dimensional velocity rate, rate of temperature and rate of concentration rise with improved values of Weissenberg number.

Originality/value

Nanofluid flows past wedge-shaped geometries have gained much consideration because of their extensive range of applications in engineering and science, such as, magnetohydrodynamics, crude oil extraction, heat exchangers, aerodynamics and geothermal systems. Virtually, these types of nanofluid flows happen in ground water pollution, aerodynamics, retrieval of oil, packed bed reactors and geothermal industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2021

Nurul Amira Zainal, Roslinda Nazar, Kohilavani Naganthran and Ioan Pop

The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims…

Abstract

Purpose

The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims to analyse the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge.

Design/methodology/approach

The multivariable differential equations with partial derivatives are converted into a specific type of ordinary differential equations by using valid similarity transformations. The reduced mathematical model is elucidated in the MATLAB system by using the bvp4c procedure. This solution method is competent in delivering multiple solutions once appropriate assumptions are supplied.

Findings

The results of multiple control parameters have been studied, and the findings are verified to provide more than one solution. The coefficient of skin friction was discovered to be increased by adding nanoparticles volume fraction from 0% to 0.5% and 1%, by almost 1.6% and 3.2%. Besides, increasing the nanoparticles volume fraction improves heat transfer efficiency gradually. The inclusion of the activation energy factor displays a downward trend in the mass transfer rates, consequently reducing the concentration profile. In contrast, the increment of the binary reaction rate greatly facilitates the augmentation of mass transfer rates. There is a significant enhancement in the heat transfer rate, approximately 13.2%, when the suction effect dominates about 10% in the boundary layer flow. Additionally, the results revealed that as the activation energy rises, the temperature and concentration profiles rise as well. It is proved that the activation energy parameter boosts the concentration of chemical species in the boundary layer. A similar pattern emerges as the wedge angle parameter increases. The current effort aims to improve the thermal analysis process, particularly in real-world applications such as geothermal reservoirs, chemical engineering and food processing, which often encountered mass transfer phenomenon followed by chemical reactions with activation energy.

Originality/value

The present results are original and new for the study of flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 November 2018

Gangadhar Kotha, Keziya Kukkamalla and S.M. Ibrahim

The purpose of this paper is to examine the magneto hydrodynamic flow and heat transfer of nanofluids over a permeable wedge based on engine oil which is under the effects of…

Abstract

Purpose

The purpose of this paper is to examine the magneto hydrodynamic flow and heat transfer of nanofluids over a permeable wedge based on engine oil which is under the effects of thermal radiation and convective heating.

Design/methodology/approach

The equations governing the flow are transformed into differential equations by applying similarity transformations. Keller box method is used to bring out the numerical solution.

Findings

The discovery interprets that temperature as well as the velocity of Ag-engine oil nanofluids are more noticeable than Cu-engine oil nanofluids. Thermal boundary layer increases for radiation parameter as well as Biot number. Fluctuations of co-efficient of drag skin friction as well heat transfer rate at the wall are also tested.

Originality/value

Till now, no numerical studies are reported on the heat transfer enhancement of the permeable wedge under thermal radiation on engine oil nanofluid flow by considering convective heating.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 January 2017

Umar Khan, Naveed Ahmed, Bandar Bin-Mohsen and Syed Tauseef Mohyud-Din

The purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to…

Abstract

Purpose

The purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to formulate the problem. Furthermore, in energy equation, the non-linear thermal radiation has also been incorporated. The equations governing the flow are transformed into a set of ordinary differential equations by using suitable similarity transforms. The reduced system of equations is then solved numerically using a well-known Runge–Kutta–Fehlberg method coupled with a shooting technique. The influence of parameters involved on velocity, temperature and concentration profiles is highlighted with the help of a graphical aid. Expressions for skin-friction coefficient, local Nusselt number and Sherwood number are obtained and presented graphically.

Design/methodology/approach

Numerical solution of the problem is obtained using the well-known Runge–Kutta–Fehlberg method.

Findings

The analysis provided gives a clear description that the increase in m and magnetic parameter M results in an increased velocity profile. Both these parameters normalize the velocity field. Radiation parameter, Rd, increases the temperature and concentration of the system so does the temperature ratio θω reduces the heat transfer rate at the wall for both stretching and shrinking wedge.

Originality/value

In the study presented, the flow of nanofluid over a moving permeable wedge is considered. The solution of the equations governing the flow is presented numerically. For the validity of results obtained, a comparison is also presented with already existing results. To the best of the authors’ knowledge, this investigation is the first of its kind on the said topic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Ruhaila Md Kasmani, S. Sivasankaran, M. Bhuvaneswari and Ahmed Kadhim Hussein

The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence…

Abstract

Purpose

The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence of suction.

Design/methodology/approach

The similarity transformation is applied to convert the governing nonlinear partial differential equations into ordinary differential equations. Then, they are solved numerically by the fourth-order Runge–Kutta–Gill method along with the shooting technique and the Newton–Raphson method. In addition, the ordinary differential equations are also analytically solved by the homotopy analysis method.

Findings

The results for dimensionless velocity, temperature, solutal concentration and nanoparticle volume fraction profiles, as well as local skin friction coefficient and local Nusselt and local Sherwood numbers are presented through the plots for various combinations of pertinent parameters involved in the study. The heat transfer rate increases on increasing the Soret parameter and it decreases on increasing the Dufour parameter. The mass transfer behaves oppositely to heat transfer.

Practical implication

In engineering applications, a wedge is used to hold objects in place, such as engine parts in the gate valves. A gate valve is the valve that opens by lifting a wedge-shaped disc to control the timing and quantity of fluid flow into an engine.

Originality/value

No such investigation is available in literature, and therefore, the results obtained are novel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Aurang Zaib, Mohammad Mehdi Rashidi, Ali J. Chamkha and Krishnendu Bhattacharyya

This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius…

Abstract

Purpose

This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius function is used.

Design/methodology/approach

The highly non-linear governing equations are developed using similarity transformations and then computed numerically via Keller–Box method.

Findings

The influences of emerging parameters on velocity, temperature distribution and concentration of nanoparticle are explained and presented via graphs and tables. Also, the behavior of fluid flow is investigated through the coefficient of skin friction, Nusselt and Sherwood numbers. Results reveal that the velocity profile enhances due to increasing Casson parameter and magnetic parameter, whereas the temperature distribution and concentration of nanoparticle decrease with larger vales of Casson parameter. It is inspected that the concentration boundary layer increases due to activation energy and decreases due to reaction rate and temperature differences.

Originality/value

The authors believe that all the numerical results are original and significant which are used in biomedicine, industrial, electronics and transportation. The results have not been considered elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

A. Postelnicu and I. Pop

The purpose of this paper is to investigate the steady flow of a non‐Newtonian power‐law type fluid over a permeable stretching surface. The surface is stretched with a prescribed…

Abstract

Purpose

The purpose of this paper is to investigate the steady flow of a non‐Newtonian power‐law type fluid over a permeable stretching surface. The surface is stretched with a prescribed skin velocity following a power‐law variation along its length.

Design/methodology/approach

Using appropriate similarity variables and boundary layer approximations, the continuity and momentum equations are reduced to an ordinary differential equation subject to appropriate transformed boundary conditions, with three dimensionless parameters: the power‐law index of the non‐Newtonian fluid, suction/injection parameter and the power law index of the skin velocity. These equations are solved numerically by using the fourth‐order Runge‐Kutta integration algorithm coupled with a conventional shooting procedure. Comparisons with closed form analytical solutions obtained for the case of Newtonian fluid by previous authors are also performed.

Findings

It was found that the dimensionless entrainment velocity decreases with the power exponent m, of the prescribed skin velocity, irrespective of the non‐Newtonian fluid nature, for both impermeable and permeable surfaces. Large rates of injection lead to very large values of the skin friction, the effect being more intense for small values of the dimensionless flow index n. At the same rate of the injection/suction, the skin friction S is increased when the surface is stretched linearly than uniformly.

Practical implications

This type of problem has potential to serve as a prototype for many manufacturing processes such as rolling sheet drawn from a die, cooling and/or drying of paper and textile, manufacturing of polymeric sheets, sheet glass and crystalline materials, etc.

Originality/value

A thorough analysis of the hydrodynamics of a stretching surface is performed in the present paper, by combining analytical and numerical means. The topics covered here (Ostwald‐de Waele power‐law fluid + prescribed skin velocity + permeability of the stretching surface) seem to be not reported till now in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

A. Zeeshan, Muhammad Imran Khan, R. Ellahi and Zaheer Asghar

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN)…

Abstract

Purpose

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN). An ANN simulation for optimal thermal transport of incompressible viscous fluid under the impact of the magnetic effect (MHD) over a shrinking wedge with sensitivity analysis and optimization with RSM has yet not been investigated. This effort is devoted to filling the gap in existing literature.

Design/methodology/approach

A statistical experimental design is a setup with RSM using a central composite design (CCD). This setup involves the combination of values of input parameters such as porosity, shrinking and magnetic effect. The responses of skin friction coefficient and Nusselt number are required against each parameter combination of the experimental design, which is computed by solving the simplified form of the governing equations using bvp4c (a built-in technique in MATLAB). An empirical model for Cfx and Nux using RSM and ANN adopting the Levenberg–Marquardt algorithm based on trained neural networks (LMA-TNN) is attained. The empirical model for skin friction coefficient and Nusselt number using RSM has 99.96% and 99.99% coefficients of determination, respectively.

Findings

The values of these matrices show the goodness of fit for these quantities. The authors compared the results obtained from bvp4c, RSM and ANN and found them all to be in good agreement. A sensitivity analysis is performed, which shows that Cfx as well as Nux are most affected by porosity. However, they are least affected by magnetic parameters.

Originality/value

This study aims to simulate ANN and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2021

Nur Syahirah Wahid, Norihan Md Arifin, Najiyah Safwa Khashi'ie, Ioan Pop, Norfifah Bachok and Ezad Hafidz Hafidzuddin

The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective…

Abstract

Purpose

The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective boundary conditions over a permeable stretching/shrinking surface.

Design/methodology/approach

The mathematical model is formulated in the form of partial differential equations (PDEs) and are then transformed into the form of ordinary differential equations (ODEs) by using the similarity variables. The deriving ODEs are solved numerically by using the bvp4c solver in MATLAB software. Stability analysis also has been performed to determine the stable solution among the dual solutions obtain. For method validation purposes, a comparison of numerical results has been made with the previous studies.

Findings

The flow and the heat transfer of the fluid at the boundary layer are described through the plot of the velocity profile, temperature profile, skin friction coefficient and local Nusselt number that are presented graphically. Dual solutions are obtained, but only the first solution is stable. For the realizable solution at the shrinking surface, the proliferation of nanoparticle volume fraction (copper) and magnetic (magnetohydrodynamics) parameters can impede the boundary layer separation. Also, Biot number could enhance the temperature profile and the heat transfer rate at the shrinking surface region. The incrementation of 0.1% of Biot number has enhanced the heat transfer rate by approximately 0.1% and the incrementation of 0.5% volume fraction for copper has reduced the heat transfer rate by approximately 0.17%.

Originality/value

The presented model and numerical results are original and new. It can be used as a future reference for further investigation and related practical application. The main contribution of this investigation includes giving the initial prediction and providing the numerical data for the other researchers for their future reference regarding the impacts of nanoparticles volumetric concentration towards the main physical quantities of interest in the presence of magnetic and radiation parameters with the convective boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

A. Mahdy and Ali J. Chamkha

The purpose of this paper is to address the thermo-physical impacts of unsteady magneto-hydrodynamic (MHD) boundary layer flow of non-Newtonian tangent hyperbolic nanofluid past a…

Abstract

Purpose

The purpose of this paper is to address the thermo-physical impacts of unsteady magneto-hydrodynamic (MHD) boundary layer flow of non-Newtonian tangent hyperbolic nanofluid past a moving stretching wedge. To delineate the nanofluid, the boundary conditions for normal fluxes of the nanoparticle volume fraction are chosen to be vanish.

Design/methodology/approach

The local similarity transformation is implemented to reformulate the governing PDEs into coupled non-linear ODEs of higher order. Then, numerical solution is obtained for the simplified governing equations with the aid of finite difference technique.

Findings

Numerical calculations point out that pressure gradient parameter leads to improve all skin friction coefficient, rate of heat transfer and absolute value of rate of nanoparticle concentration. As well as, lager values of Weissenberg number tend to upgrade the skin friction coefficient, while power law index and velocity ratio parameter reduce the skin friction coefficient. Again, the horizontal velocity component enhances with upgrading power law index, unsteadiness parameter, velocity ratio parameter and Darcy number and it reduces with rising values of Weissenberg number.

Originality/value

A numerical treatment of unsteady MHD boundary layer flow of tangent hyperbolic nanofluid past a moving stretched wedge is obtained. The problem is original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 228