Search results

1 – 9 of 9
Article
Publication date: 7 March 2016

Yi Chen, Yihua Yao, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

With the popularization of permanent magnet linear synchronous machines (PMLSMs) in recent years, the temperature rise has attracted increasingly attention since excessive heat…

Abstract

Purpose

With the popularization of permanent magnet linear synchronous machines (PMLSMs) in recent years, the temperature rise has attracted increasingly attention since excessive heat generated in the windings could deteriorate the electromagnetic performance. In order to solve this problem, adopting water-cooled system is an effective method. The purpose of this paper is to investigate a 12-slot/11-pole (12S/11P) water-cooled double-sided PMLSM, which adopts the all teeth wound concentrated winding and shifted armature ends.

Design/methodology/approach

Based on 2D finite element analysis (FEA), the thermal performances, such as temperature distribution, the optimization of water flow rate and the influence of demagnetization, are investigated under the condition of continuous duty. Then the maximum current density and average thrust force are calculated for PMLSMs with or without water-cooled system. Finally, the detailed comparison is made between single-sided PMLSM and double-sided PMLSM.

Findings

With water-cooled system, the thermal performance of PMLSM can be improved, such as an efficient decrease of temperature rise, restriction of permanent magnet demagnetization and a dramatic increase of the maximum thrust force. It is found that the water flow rate has a significant impact on temperature rise, which can be optimized according to demands.

Originality/value

Electromagnetic and thermal coupled analysis is proposed in this paper. It can approximately predict thermal performance and save the manual iteration time at the same time. This method also can provide as a reference of thermal analysis for other PMLSMs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Liren Huang, Yunyue Ye, Xiaoyan Huang and Youtong Fang

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However…

Abstract

Purpose

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However, the vibration caused by detent force and difficulty of maintenance become the barriers that restrict its application. The paper aims to discuss these issues.

Design/methodology/approach

In order to simplify structure and improve driving performance, a novel PMLSM with segmented armature core and end non-overlapping windings is proposed. The analytical formula of detent force is derived based on energy method and harmonic analysis, which is validated by two-dimensional finite element analysis (FEA). Moreover, with erected parametric FEA calculation, the selection principles of slot-pole number combination and interval distance to this novel structure are obtained. Finally, the heat dissipation ability of conventional PMLSM and novel PMLSM are compared through thermal analysis.

Findings

In novel PMLSM, it is found that the (3m+1) and (3m+2) order harmonic components of thrust force are eliminated, which leads to a better driving performance in comparison with the conventional structure. Furthermore, the good heat dissipation ability of novel structure makes it possible for higher thrust density, which is crucial for ropeless lifter.

Originality/value

The novel PMLSM has excellent driving performance, simple structure for maintenance, possibility of modular production and high thrust density. It is a strong candidate for long-stroke ropeless lifter.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Jiameng Shi, Hao Kong, Liren Huang, Qinfen Lu and Yunyue Ye

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of…

Abstract

Purpose

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of this paper is to investigate a novel modular single-sided flat permanent magnet linear synchronous motor (PMLSM), which adopts segmented armature with the required flux gaps between segments to enhance the performance.

Design/methodology/approach

Using 2D finite element analysis, the performances, such as open-flux linkage, back-EMF, average thrust force, thrust ripple, etc., are compared in different values of flux gaps, as well as different slot/pole number combinations (mainly odd numbers of poles). Finally, to show the difference of linear motor from rotary one, the detailed comparison is made between modular PMLSM and rotary PMSM.

Findings

Due to flux gaps, it is found the electromagnetic performances are worsened along with flux gap width increasing to modular PMLSMs having slot number higher than pole number, but some aspects of performances such as winding factor, open-circuit flux linkage, back-EMF and average thrust can be improved to those having slot number lower than pole number. Due to the end effect of linear format, the thrust ripple is not significantly improved.

Originality/value

It is concluded the proper flux gaps can be chosen to improve the performance of PMLSM with certain slot/pole combinations. A new structure of 12-slot-13-pole (hereinafter referred to as 12s/13p) PMLSM with fractional slot and alternative-teeth wound winding is designed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2018

Lufeng Zhang and Kai Wang

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd…

Abstract

Purpose

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd) shaping mover in comparison with the PMLSM with sine (SIN) shaping mover and conventional shaping mover.

Design/methodology/approach

The optimal amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping permanent magnet (PM) for maximizing the thrust force is analytically derived and confirmed by finite element method (FEM). Furthermore, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are optimized. It is found that the optimal amplitude of the injected third harmonic is one-sixth of the fundamental one, the optimal PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are 0, 0.85 and 0.5 mm, respectively. In addition, the electromagnetic performances are analyzed and quantitatively compared for the PMLSM with SIN + 3rd shaping mover, SIN shaping mover and conventional shaping mover.

Findings

The average thrust force and efficiency of the PMLSM with SIN + 3rd shaping mover are improved significantly, while the thrust ripple is not increased, comparing to those of the PMLSM with SIN shaping mover. Meanwhile, the thrust ripple is lower than that of the conventional shaping mover.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the influences of harmonics in the current on electromagnetic performances are not considered.

Originality/value

This paper presents a PMLSM with SIN + 3rd shaping mover to improve the thrust force and efficiency without increasing the thrust ripple, considering the effects of the amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping PM, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yihua Yao, Yi Chen, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary…

Abstract

Purpose

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary machines. The purpose of this paper is to analyze the influence of electric loading on thrust ripple performances based on a 12 slots/14 poles (12S/14P) PMLSM. Furthermore, the method of skewed PMs to reduce thrust ripple is investigated based on multi slices 2D finite element (FE) models.

Design/methodology/approach

The thrust ripple of PMLSM under open-circuit condition results from the slotting and the longitudinal end effects. Therefore, periodical model has been designed to clarify the effect of the longitudinal end effect. Under on-load condition, the thrust ripple increases and exhibits an effective component of thrust force. To analyze the thrust ripple under on-load condition, frozen permeability (FP) technique is employed. In addition, the method of skewed PMs is analyzed in this paper to obtain more smooth thrust force performance. The effectiveness of skewing accounting for skew angles, step skew numbers and slot/pole number combinations was highlighted.

Findings

The longitudinal end effect dominates the thrust ripple of PMLSM in both cases, i.e., open-circuit and on-load conditions. Under on-load condition, the second harmonic component of thrust ripple related to flux linkage harmonics increases significantly. Moreover, the effectiveness of skewed PMs is largely reduced with the increase of magnetic saturation. At last, a proper skew angle and step skew number are obtained for the conventional PMLSM with fractional-slot winding.

Originality/value

By 60 electrical degrees and two or three step skewed PMs, the thrust ripple can be decreased to a tolerable limite for conventional PMLSM. The thrust ripple harmonics contributed by longitudinal end effect and flux linkage harmonics are analyzed, respectively, which is beneficial to exploring other techniques such as adding end auxiliary teeth to obtain lower thrust force pulsation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Ghislain Remy, Julien Gomand, Abdelmounaïm Tounzi and Pierre‐Jean Barre

The purpose of this paper is to present an analysis of the force ripples of an open slot permanent magnet linear synchronous motor (PMLSM). A calculation procedure using 2D finite…

Abstract

Purpose

The purpose of this paper is to present an analysis of the force ripples of an open slot permanent magnet linear synchronous motor (PMLSM). A calculation procedure using 2D finite elements method (2D‐FEM) is then evaluated with experimentations.

Design/methodology/approach

First, the studied PMLSM and its main features are introduced. Then, the 2D‐FEM model used to study the motor is presented. The methods used to calculate the force and the meshing procedures are also highlighted. The calculated no‐load force is compared to measurements. Lastly, the validated model is used to study the influence of the current magnitude on the force ripples at load.

Findings

In addition to the no‐load case, the influence of the current magnitude on these forces is presented.

Originality/value

The paper is orientated with a sound industrial background. For that reason, the impact of the current saturation on the thrust generation is presented via the evolution of the thrust coefficient, which is the force to the RMS currents ratio.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 February 2014

Liang Yan, Lei Zhang, Zongxia Jiao, Hongjie Hu, Chin-Yin Chen and I-Ming Chen

Force output is extremely important for electromagnetic linear machines. The purpose of this study is to explore new permanent magnet (PM) array and winding patterns to increase…

Abstract

Purpose

Force output is extremely important for electromagnetic linear machines. The purpose of this study is to explore new permanent magnet (PM) array and winding patterns to increase the magnetic flux density and thus to improve the force output of electromagnetic tubular linear machines.

Design/methodology/approach

Based on investigations on various PM patterns, a novel dual Halbach PM array is proposed in this paper to increase the radial component of flux density in three-dimensional machine space, which in turn can increase the force output of tubular linear machine significantly. The force outputs and force ripples for different winding patterns are formulated and analyzed, to select optimized structure parameters.

Findings

The proposed dual Halbach array can increase the radial component of flux density and force output of tubular linear machines effectively. It also helps to decrease the axial component of flux density and thus to reduce the deformation and vibration of machines. By using analytical force models, the influence of winding patterns and structure parameters on the machine force output and force ripples can be analyzed. As a result, one set of optimized structure parameters are selected for the design of electromagnetic tubular linear machines.

Originality/value

The proposed dual Halbach array and winding patterns are effective ways to improve the linear machine performance. It can also be implemented into rotary machines. The analyzing and design methods could be extended into the development of other electromagnetic machines.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 October 2013

Gang Zhang, Jianhua Wu, Pinkuan Liu and Han Ding

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel…

Abstract

Purpose

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel manipulator (TPM) driven by linear motors.

Design/methodology/approach

The task space dynamic model of a 2-DoF TPM is derived using Lagrangian equation of the first type. A task space dynamic model-based feedforward controller (MFC) is designed, which is combined with a cascade PID/PI controller and velocity feedforward controller (VFC) to construct a hybrid PID/PI+VFC/MFC controller. The hybrid controller is implemented in MATLAB/dSPACE real-time control platform. Experiment results are given to validate the effectiveness and industrial applicability of the hybrid controller.

Findings

The MFC can compensate for the nonlinear dynamic characteristics of a 2-DoF TPM and achieve better tracking performance than the conventional acceleration feedforward controller (AFC).

Originality/value

The task space dynamic model-based hybrid PID/PI+VFC/MFC controller is proposed for a 2-DoF linear-motor-driven TPM, which reduces the tracking error by at least 15 percent compared with conventional hybrid PID/PI+VFC/AFC controller. This control scheme can be extended to high-speed and high-precision trajectory tracking control of other parallel manipulators by reprogramming the feedforward signals of traditional cascade PID/PI controller.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 May 2012

Jinlin Gong, Alexandru Claudiu Berbecea, Frédéric Gillon and Pascal Brochet

The purpose of this paper is to present a low evaluation budget optimization strategy for expensive simulation models, such as 3D finite element models.

Abstract

Purpose

The purpose of this paper is to present a low evaluation budget optimization strategy for expensive simulation models, such as 3D finite element models.

Design/methodology/approach

A 3D finite element electromagnetic model and a thermal model are developed and coupled in order to simulate the linear induction motor (LIM) to be conceived. Using the 3D finite element coupling model as a simulation model, a multi‐objective optimization with a progressive improvement of a surrogate model is proposed. The proposed surrogate model is progressively improved using an infill set selection strategy which is well‐suited for the parallel evaluation of the 3D finite element coupling model on an eight‐core machine, with a maximum of four models running in parallel.

Findings

The proposed strategy allows for a significant gain of optimization time. The 3D Pareto front composed of the finite element model evaluation results is obtained, which provides the designer with a set of optimal trade‐off solutions for him/her to make the final decision for the engineering design.

Originality/value

An infill set selection strategy is proposed, which allows the parallel evaluation of the finite element model, and at the same time guides the progressive construction of an improved surrogate model during the multi‐objective optimization run. The paper may stand as a good reference for researchers/engineering designers who have to deal with optimal design problems implying costly simulation models.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 9 of 9