Search results

1 – 10 of 716
Article
Publication date: 28 August 2023

P.S. Liu, S. Song and J.X. Sun

The purpose of this paper is mainly to know: (1) the sound absorption coefficient of porous composite structures constituted by a new kind of lightweight ceramic foam and…

Abstract

Purpose

The purpose of this paper is mainly to know: (1) the sound absorption coefficient of porous composite structures constituted by a new kind of lightweight ceramic foam and perforated plate; (2) the availability of an equivalent porous material model, recently proposed by the present author, to these composite structures in sound absorption.

Design/methodology/approach

A kind of lightweight ceramic foam with bulk density of 0.38–0.56 g·cm-3 was produced by means of molding, drying and sintering. The effect of stainless steel perforated plate on sound absorption performance of the ceramic foam was investigated by means of JTZB absorption tester.

Findings

The results indicate that the sound absorption performance could be obviously changed by adding the stainless steel perforated plate in front of the porous samples and the air gap in back of the porous samples. Adding the perforated plate to the porous sample with a relatively large pore size, the sound absorption performance could be evidently improved for the composite structure. When the air gap is added to the composite structure, the first absorption peak shifts to the lower frequency, and the sound absorption coefficient could increase in the low frequency range.

Originality/value

Based on the equivalent porous material model and the “perforated plate with air gap” model, the sound absorption performance of the composite structures can be simulated conveniently to a great extent by using Johnson-Champoux-Allard model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 February 2020

Xianzhi Mei, Yaping Chen, Jiafeng Wu and Xiaoyu Zhou

Conventional electric heaters mostly use U-shaped electric heating tubes and the hollow tube electric heaters are new type ones that rely on the heat transfer tubes as heating…

Abstract

Purpose

Conventional electric heaters mostly use U-shaped electric heating tubes and the hollow tube electric heaters are new type ones that rely on the heat transfer tubes as heating elements. However, in the original design, the fluid flows through the annular gaps between the shell wall and the supporting plates, the chambers between supporting plates are generally stagnant zones. The purpose of study is to overcome these deficiencies.

Design/methodology/approach

A modified approach is proposed in which the heating tubes are surrounded by holes on the supporting plates, thus the stagnant flow zone can be eliminated and the heating surfaces of both inside and outside the tube can be fully used. Numerical simulations were carried out on four schemes of hollow tube electric heaters, i.e. plate blocked, countercurrent, parallel and split. The results show that the two schemes of parallel and split can reduce the temperature difference between the two sides of the fixed tube plate, and thus reduce thermal stress and prolong the service life.

Findings

The split scheme of electric heater has the highest comprehensive index, moderate heat transfer coefficient and minimum pressure drop on the shell side. Its average heat transfer coefficient and comprehensive index are, respectively, 15.7% and 52.9% higher and its average pressure drop and tube wall temperature are, respectively, 57.6% and 19 K lower than those of the original plate blocked scheme, thus it can be recommended as the best scheme of the hollow tube electric heaters.

Originality/value

Based on the original design of hollow tube electric heater with plate blocked scheme, three plate perforated schemes were proposed and investigated. The thermal and flow features of the four schemes were compared in terms of heat transfer coefficient, pressure drop and comprehensive index ho·Δpo−1/3. The split scheme can reduce the temperature difference between two sides of the fixed tube plate with reduced thermal stress. It has moderate tube wall temperature and heat transfer coefficient, the smallest shell side pressure drop and the highest comprehensive index ho·Δpo−1/3, and it can be recommended as the optimal scheme.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2021

Faezeh Nejati Barzoki, Ghanbar Ali Sheikhzadeh, Morteza Khoshvaght Aliabadi and Ali Akbar Abbasian Arani

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated

Abstract

Purpose

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated chevron plat-fin (PCPF) with different vortex generators (VGs) shapes.

Design/methodology/approach

First, three general shapes of VGs including rectangular, triangular and half circle, are compared to each other. Then, the various shapes of rectangular VGs, (horizontal, vertical and square) and triangular VGs, (forward, backward and symmetric) are evaluated. To comprehensively evaluate the thermohydraulic performance of the PCPF with various VG shapes, the relationship between the Colburn factor and the friction factor (j/f) is presented, then a performance index (η) is applied using these factors.

Findings

Results show that the enhanced models of the PCPF, which are equipped with VGs, have higher values of j/f ratio and η as compared with the reference model (R). Further, the half-circle VG with the lowest pressure drop values (about 2.4% and 4.9%, averagely as compared with the S and ST vortex generators), shows the highest thermohydraulic performance among the proposed shapes. The maximum of performance index of 1.14 is found for the HC vortex generator at Re = 4,000. It is also found that the square and forward triangular VGs, have the best thermohydraulic performance among the rectangular and triangular VGs respectively and the highest performance index of 1.13 and 1.11 are reported for these VGs.

Originality/value

The thermohydraulic performance of the PCPF with different vortex generators VGs shapes have been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 May 2019

George Bikakis, Nikolaos Tsigkros, Emilios Sideridis and Alexander Savaidis

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using…

Abstract

Purpose

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile.

Design/methodology/approach

Using validated finite element models, the influence of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely, 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLAss REinforced plates is also implemented.

Findings

It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables such as the impact load, the absorbed impact energy and the projectile’s displacement during the ballistic impact phenomenon is analyzed.

Originality/value

The ballistic resistance of the aforementioned steel fiber-metal laminates has not been studied previously. This study contributes to the scientific knowledge concerning the impact response of steel-based fiber-metal laminates and to the construction of impact resistant structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 May 2021

Shiang-Wuu Perng, Horng Wen Wu and Jun-Kuan Wu

The purpose of this study is to promote laminar heat transfer from the channel heated through a slab with slits and inclined ribs protruding across.

Abstract

Purpose

The purpose of this study is to promote laminar heat transfer from the channel heated through a slab with slits and inclined ribs protruding across.

Design/methodology/approach

The novel design of this study is performed through making the slits in the slab (C1–C3: with slits; C4–C6: without slits) and changing the vertical location of this slab (1/4, 1/2 and 3/4 channel height). The thermal fluid characteristics of all cases are analyzed for various Reynolds numbers (500, 1,000, 1,500 and 2,000) by the SIMPLE-C algorithm.

Findings

The results display that the ribbed slab effectively improves the heat transfer. The slits can modify the flow field in the vortexes around the inclined ribs and remove more heat from this zone to promote the heat transfer. As compared with C0 (without a slab), C2 (the slab with slits and inclined ribs protruding across located vertically on the 3/4 channel height) raises the averaged Nusselt number up to 27.7% at Re = 2,000. As compared with C4 (without slits), C1 (with slits) gains the maximum increase in the averaged Nusselt number by 5.07% at Re = 1,000.

Research limitations/implications

The constant thermo-physical properties of incompressible fluid and the steady flow are considered in this study.

Practical implications

The numerical results will profit the design of heated passageway using a slab with slits and inclined ribs protruding across to acquire better heat transfer promotion.

Originality/value

This slab with slits and inclined ribs protruding across can be applied to the heat transfer promotion and thus be viewed as a useful cooling mechanism in the thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2004

R.V. Sabariego, J. Gyselinck, P. Dular, J. De Coster, F. Henrotte and K. Hameyer

This paper deals with the coupled mechanical‐electrostatic analysis of a shunt capacitive MEMS switch. The mechanical and electrostatic parts of the problem are modelled by the FE…

Abstract

This paper deals with the coupled mechanical‐electrostatic analysis of a shunt capacitive MEMS switch. The mechanical and electrostatic parts of the problem are modelled by the FE and BE methods, respectively. The fast multipole method is applied to reduce the storage requirements and the computational cost of the BE electrostatic model. An adaptive truncation expansion of the 3D Laplace Green function is employed. The strong interaction between the mechanical and electrostatic systems is considered iteratively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2002

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from…

2509

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The bibliography at the end of the paper contains more than 1330 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1999–2002.

Details

Engineering Computations, vol. 19 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1930

Darby, M. O., Regent House, Kingsway, London, and Sidney, A. A., 22, Lodge Road, Croydon. Mirch 23, 1929, No. 9425. [Class 7 (iii).]

Abstract

Darby, M. O., Regent House, Kingsway, London, and Sidney, A. A., 22, Lodge Road, Croydon. Mirch 23, 1929, No. 9425. [Class 7 (iii).]

Details

Aircraft Engineering and Aerospace Technology, vol. 2 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of 716